XL SLIM PLC

perfect solutions for customers and creates higher value.

XL SLIM PLC/XD SMALL-SIZED PLC

XL Series

XL1 series/XL3 series/XL5 series/XL5E series/XLME series

- Ultra-thin appearance, compact and practical, suitable for
- various industrial environments
- Strong compatibility
- Stronger scalability
- Outstanding cost-effective
- Save installation space

XD Series

XD1 series/ XD2 series/XD3 series/XD5 series/XDM series/XDC series/XD5E series/XDME series

- Richer control schemes
- More complete product line-up
- More flexible scalability
- Faster processing speed
- More stable performance

Product lineup

256K program capacity	© 256K program capacity
I/O sequential control	I/O sequential control
Max I/O 16 points	Max I/O 336 points
1 channel RS232, 1 channel RS485	© 1 channel RS232, 1 channel RS
Basic instruction 0.02~0.05us	O USB port
USB port	© 2-axis 100KHz pulse output
X-NET fieldbus	⑦ Basic instruction 0.02~0.05us
	X-NET fieldbus

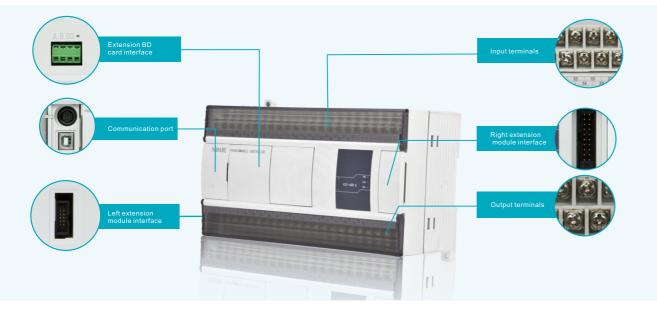
program capacity quential control /O 336 points nnel RS232, 1 channel RS485 © USB port © 4-axis 100KHz pulse output © Basic instruction 0.02~0.05us © X-NET fieldbus

XL series PLC not only has powerful CPU processing speed, high reliability and compact structure, but also provides more

- © 512K program capacity
 © 1M program capacity

 © I/O sequential control
 © I/O sequential control

 © Max I/O 544 points
 © Max I/O 544 points

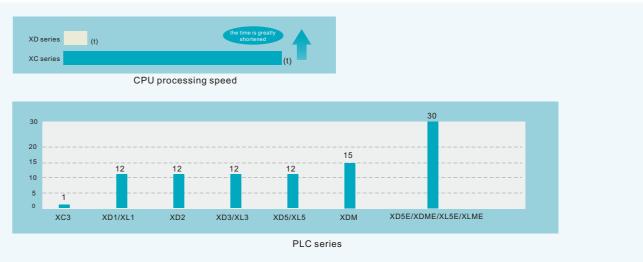

 © 1 channel RS232, 1 channel RS485
 0
 - Ethernet port
 - another point
 4-axis 100KHz pulse output
 Basic instruction 0.02~0.05us
 X-NET fieldbus

- 1M program capacity
 I/O sequential control
 Max I/O 544 points
 1 channel RS232, 1 channel RS485
 Ethernet port
 4 axis 100KHz pulse output
 Basic instruction 0.02-0.05us
 X-NET fieldbus
 Lingar(un internolation


- Linear/arc interpolation
 Following function

XD Series PLC

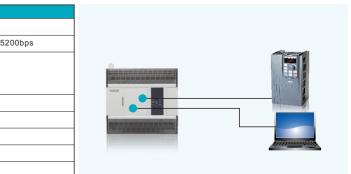
Faster processing speed, richer scalability, more stable performance, meet variety of requirements Following the XC series PLC, Xinje has devoted itself to the development of XD series PLC, which have faster speed, higher performance and better meet the diversified needsof users.


Product lineup

High-speed computing

Non-Ethernet PLC basic instruction processing speed is 0.02~0.05us, scanning time 10000 steps 0.5ms, program capacity 256k~512k, the overall processing speed is about 12-15 times faster than that of XC. Ethernet PLC basic instruction processing speed is 0.01~0.03us, scanning time 10000 steps 0.2ms, program capacity 1M, the overall processing speed is about 2-3 times faster than that of XDM.

Expanded software component capacity



Multiple communication ports

XD series PLC has 5 communication ports at most. XL series PLC has 3 communication ports at most. Support RS232, RS485, motion control bus, X-NET fieldbus, Ethernet and so on, can connect peripheral such as frequency convertor, meter, and create communication network freely.

•Serial port (RS232/RS485) specification

Item	Parameter
Communication mode	Halfduplex
Baud rate	9600bps, 19200bps(default), 38400bps, 57600bps, 115
Data type	Data bit: 5, 6, 7, 8 (default), 9 Stop bit: 1 (default), 1.5, 2 Parity bit: no parity, odd, even (default)
Mode	RTU (default), ASCII, free communication
Station number	1~255 (default is 1)
Send delay time	1~100ms (default is 3ms)
Reply timeout	1~1000ms (default is 300ms)
Retry count	1~20 (default is 30)

In order to meet the application needs of more occasions, XD series PLC can be equipped with rich extension modules including I/O extension, analog extension, temperature control, BD card, left extension. It can expand up to 10-16 different types of modules, 1~2 BD cards, 1 left extension module.

XD series 0 10. Up to 16 modules can be extend

Series	Model	Left extension module	BD card	Right extension module
XD1	16/24/32 Points	0	0	0
	16 Points	1	0	0
XD2	24/32 Points	1	1	0
	48/60 Points	1	2	0
	16 Points	1	0	10
XD3	24/32 Points	1	1	10
48/60 Points		1	2	10
	16 Points	1	0	10
XD5 24/32/24T4/32T4 Points		1	1	16
	48/60/48T6/60T2 Points	1	2	16
XDM	24T4/32T4 Points	1	1	16
XDM	60T4/60T10 Points	1	2	16
XDC	24/32 Points	1	1	16
XDC	48/60 Points	1	2	16
VDCE	30T4 Points	1	1	16
XD5E 60T10 Points		1	2	16
XDME	60T10 Points	1	2	16
XL1	16 Points	0	0	0
XL3	16 Points	1	0	10
XL5	32T4 Points	1	0	16
XL5E	32T4 Points	1	0	16
XLME	32T4 Points	1	0	16

Right extension module

•I/O extension module

- ()To extend I/O points, points 8~32, the basic unit can be extended to 512 points at most. @Output extension module has two output types which are transistor (T) and relay ®.
- •Analog and temperature control extension module

(DD/A and A/D conversion function. XD/XL series PLC can be applied to temperature, flow, liquid level and other pressure process control systems by extending analog I/O module, temperature control module.

OPID function has more flexible use, higher control accuracy, only four parameters need to be set.

③Each channel of temperature control module has PID and auto-tuning function, it can exchange data from basic unit through instruction FROM and TO.

Left extension module

•Analog and temperature extension module D/A, A/D conversion and temperature measurement function.

•Communication module

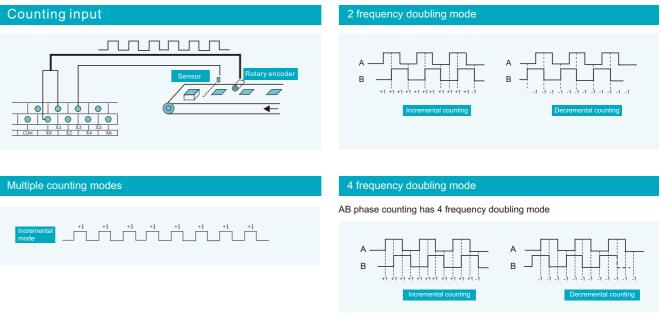
① PLC can transmit data through wireless WiFi, wireless transparent transmission, RS232, RS485.

Extension BD card

The small size BD card can be installed on the PLC, not occupy extra space, with communication function.

Data exchange speed is faster between expansion module and PLC

Data exchange between extension module and ontology has changed from parallel communication of XC series to SPI serial communication of XD/XL series. The speed of data exchange is faster (2ms/AD).


Soft components are divided more finely

Soft components are divided more finely, make the ladder chart looking more intuitive. Common soft components, power-down memory soft components and special soft components can be distinguished by the writing format of soft components. Single phase and AB phase of high speed counter can be ditinguished by the writing format of soft components.

T	ype	Soft components	Notes	
		Х	Input terminal	
		Y	Output terminal	
		М	Internal coil	
		S	Flow coil	
		SM	Special internal coil	Same to the special a
_		Т	Timer coil	
Bit	object	ET	Precise timer coil	Same to T600~T618 i
		С	Counter coil	
		HM	Power-down memory internal coil	Same to power-down
		HS	Power-down memory flow coil	Same to power-down
		HT	Power-down memory timer coil	New soft components
		HC	Power-down memory counter coil	Same to power-down
HSC		HSC	High speed counter coil	Same to high speed counte
	SEM		Special coil for wait instruction	The wait coil can be s
		D	Register	
		TD	Timer register	
		ETD	Precise timer register	
	CD	Counter register		
		SD	Special register	
Š	RAM	ID	Analog collecting register	
d		QD	Analog output register	
Word object		HD	Power-down memory register	
ot		HTD	Power-down memory timer register	
		HCD	Power-down memory counter register	
		HSCD	High speed counter register	
		HSD	Power-down memory special register	
	FLASH	FD	Flash register	
	FLASH	SFD	Special flash register	To protect user's inte

High speed counter

XD/XL series PLC can be equipped with 2-10 channels, 2-phase and 32-bit high-speed counter, which can be directly connected with rotary encoder. By selecting different counters, single-phase counting (incremental mode, max frequency 80Khz) and AB phase counting (2 frequency doubling and 4 frequency doubling, max frequency 50KHz) can be performed. The details of PLC high speed counter please refer to appendix high speed counter configuration table.

Notes
uxiliary relay after M8000 in XC PLC
in XC
memory internal coil in XC, default is M3000~M7999
memory flow coil in XC, default is S512~S1023
s, even if the PLC is powered off, the value and status of the timer remain unchanged.
memory counter coil in XC, default is C320~C630
er coil C600~C634 in XC, XD only has single phase and AB phase mode, AB phase has 2 frequency doubling and 4 frequency doubling
et freely in XC, XD only can be SEM coil
llectual property rights

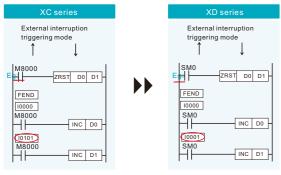
Interruption function

XD/XL series PLC all have interruption function. Interruption can be divided into external interruption, timing interruption, 100-segment high-speed counting interruption, electronic cam function and 100-segment pulse interruption. Some special operations can be realized by calling interruption, which is not affected by the scanning cycle of PLC.

Input interruption

Timing interruption

() In the case of long execution cycle of the main program, interruption is very practical to deal with specific programs, or to execute specific programs at intervals in sequential scanning. Not affected by the scanning cycle of PLC, every Nms executes timing interruption subroutine.

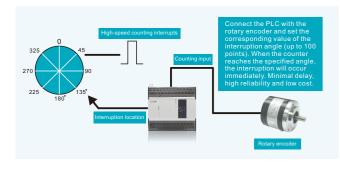

@XD/XL series PLC has at least 20-channel timing interruption, 2-times of XC series

External interruption

()The input terminal can be used as external interruption input, each input terminal is corresponding to one external interruption, is triggered at the rising or falling edge.

@XD/XL series external interruption terminals are more than that of XC series.

③The rising edge and falling edge of XD/XL series external interruption can be used at the same time.



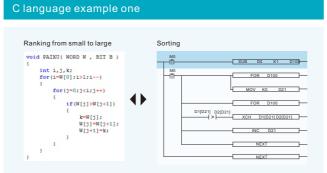
The rising and falling edges of different interruptions can be used

The rising and falling edges of the same interruption can be used

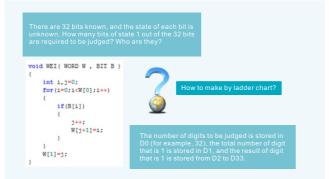
100-segment high speed counting interruption

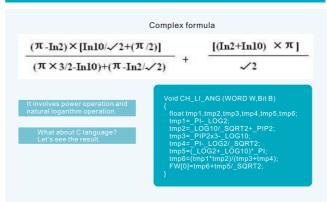
() High speed pulse counting interruption, good real-time ability ②XD/XL series high speed counter has 100-segment 32-bit preset value, the interruptionwill be generated when the counting difference value of each segment is equal to preset value.

100-segment pulse interruption

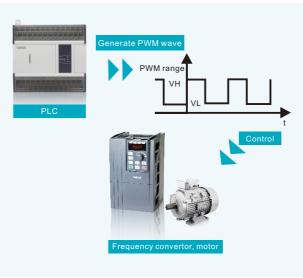

Multi-segment pulse output instruction PLSR can set 100 segments, an interrupt occurs after each pulse is executed.

C language programming function


Program confidentiality is better, when the user edits the function block, the module can be directly invoked where needed, and internal program encryption is not visible. Support richer arithmetic functions, including some supported by C language.Compared with XC series, XD/XL series not only supports local variables, but also global variables. It saves internal space, reduces workload and has high programming efficiency.



C language example two


C language example three

Pulse width modulation

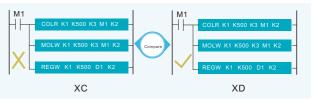
Pulse width modulation (PWM) can be realized by PWM instruction. The precision of pulse width subdivision is 128 times higher than that of XC series, up to 1/65536.

With this function, the frequency converter and DC motor can be controlled.



PID control

which makes it more flexible to use.


the control accuracy.

can be applied in more applications.

Optimized Modbus instructions

In the main program, multiple Modbus communication instructions can be written together and triggered by the same condition at the same time. The PLC will queue the Modbus communication requests according to the protocol station, so that the half-duplex characteristics of Modbus will not lead to errors in the simultaneous execution of multiple instructions.

Sequence function block

In the Sequence function block, all programs are executed sequentially, and the execution of the next instruction begins only after the first instruction has been executed. Sequence function blocks can be used to optimize the ladder chart.

I Instruction List MOV K1 D0 2 Pulse Config PLSR D0 D100 K1 Y0 3 Wait Config WAIT K1 K100 4 Read/Write Module TO K10000 H2001 M3 D10	Comment:	Sequence Block1		
I Instruction List MOV K1 D0 2 Pulse Config PLSR D0 D100 K1 Y0 3 Wait Config WAIT K1 K100 4 Read/Write Module TO K10000 H2001 M3 D10	Insert	Edit Delete	Upwards Downwa	rds
2 Pulse Config PLSR D0 D100 K1 Y0 3 Wait Config WAIT K1 K100 4 Read/Write Module TO K10000 H2001 M8 D10	Index	Skip	Comment	Output
3 Wait Config WAIT K1 K100 4 Read/Write Module TO K10000 H2001 K8 D10	1		Instruction List	MOV K1 DO
4 Read/Write Module TO K10000 H2001 KS D10	2		Pulse Config	PLSR DO D100 K1 YO
	3		Wait Config	WAIT K1 K100
	4		Read/Write Module	TO K10000 H2001 K8 D10
5 fast position DRV DO D2 YO Y1	5		fast position	DRV DO D2 YO Y1
6 Read/Write SD WRITESD D100 K1 D0	6		Read/Write SD	WRITESD D100 K1 D0

Real-time clock

XD/XL series PLC all models have clock inside. Built-in clock, Lithium battery power-off memory. XD-CLOCK-BD can be used as high precision clock. Clock protection function: when the user encrypted downloads program in advanced mode, it will not be possible to modify the PLC clock through communication.

Frequency measurement

32-bit instruction FRQM can measure the frequency.

Self-diagnostic function

Power-on self-check, monitor timer, grammar check

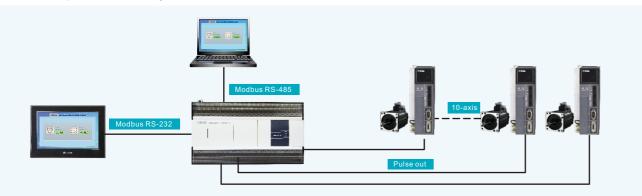
Precise timing

32-bit instruction STR can precise timing. The precise timer will produce a corresponding interrupt flag when it reaches the timer value. It can execute the interrupt subroutine. Each precise timer has a corresponding interrupt flag. Precise timer is a 32-bit 1ms timer.

Small shape, more convenient to install

Compact structure, improve utilization, two installation options. XD/XL series lithium batteries can be easily replaced without disassembling the PLC.

Password protection


6-bit ASCII increase program security. FS soft component can protect user's intellectual property rights.

Powerful motion control function

Pulse function	Multifunctional instruction PLSR, rich back-to-origin modes
Interpolation function	2-axis linkage (linear/arc interpolation) (only XDM, XDME, XLME, XG1, XG2 series PLC support this function)
X-NET motion bus	Support 1 channel 20-axis X-NET motion bus (only XDC, XG1 series PLC support)

Pulse function

•Multi-axis independent control diagram

•Up to 100KHz pulse output, up to 10 channels

XD2/XD3/XL3/XDC have 2-channel pulse output, XD5 has 2~6 channels pulse output, XL5/XL5E/XLME have 4-channel pulse output, XDM/XD5E have 4~10 channels pulse output, XDME series has 10-channel pulse output. The output frequency can reach 100KHz by using different instructions. It needs to use transistor output PLC for pulse output such as XD3-16T-E.

Series	Model	Pulse output channel	Pulse output terminal
XD1 series	16T/24T/32T	0	×
XD2 series	Transistor output model	2	Y0/Y1
XD3 series	Transistor output model	2	Y0/Y1
	16T/24T/32T/48T/60T	2	Y0/Y1
XD5 series	24T4/32T4	4	Y0/Y1/Y2/Y3
	48T6/60T6	6	Y0/Y1/Y2/Y3/Y4/Y5
	24T4/32T4/60T4	4	Y0/Y1/Y2/Y3
XDM series	60T10	10	Y0/Y1/Y2/Y3/Y4/Y5/Y6/Y7/Y10/Y11
XDC series	24T/32T	2	Y0/Y1
ADC series	48T/60T	2	Y0/Y1
XD5E series	XD5E series 30T4		Y0/Y1/Y2/Y3
60T10		10	Y0/Y1/Y2/Y3/Y4/Y5/Y6/Y7/Y10/Y11
XDME series	60T10	10	Y0/Y1/Y2/Y3/Y4/Y5/Y6/Y7/Y10/Y11
XL1 series	16T	0	×
XL3 series	16T	2	Y0/Y1
XL5 series	32T4	4	Y0/Y1/Y2/Y3
XL5E series	32T4	4	Y0/Y1/Y2/Y3
XLME series	32T4	4	Y0/Y1/Y2/Y3

•Powerful instruction function

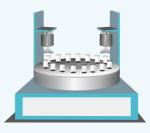
XD/XL series PLC solve the disadvantage of XC series of pulse instructions with single function and many instructions. It combines the functions of PLSR and PTO of XC series PLC to make the pulse function more compact and powerful.



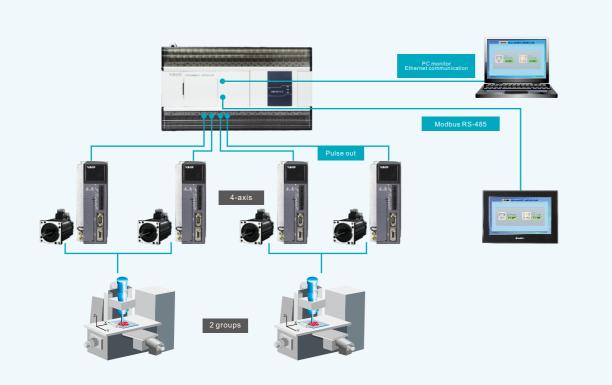
Application

Capping machine

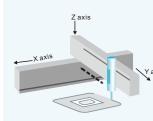
Automatic capping machine has beautiful appearance, dexterity, fast capping speed and high qualified rate. It is suitable for capping different bottles in food, pharmaceutical, daily chemical, pesticide, cosmetics and other industries. The machine is innovative in design, intelligent control of mechanical torque, convenient in operation and adjustment. Operators only need to put the cap on the mouth of the bottle. During the forward movement of the bottle, the cap is tightened by three groups of gears automatically. It can be used in stand-alone production, and it is also an ideal mode for connecting production.



- Reduced instruction
- ② Flexible configuration
- ③ Various curve acceleration and deceleration
- ④ Startup in interruption subprogram
- (5) Start, end frequency, rising, falling slope can be set separately, higher accuracy and more delicacy
- (6) After each pulse is sent, if there is an interrupt coming, other programs will be
- processed. Fast response, not affected by the scanning cycle, save external interruption


Glass grinder

The automatic grinding of glass cup mouth can realize simultaneous processing of multiple glasses. The servo system can realize the advantages of high grinding accuracy and high product consistency and can rapidly improve production efficiency.


Interpolation function

•Multi-Axis linkage motion control diagram

Application

Application of sealant

sealant. It can coat the fluid droplets on the product surface or internal, accurate positioning, accurate sealant control, no wire drawing, no leakage, no sealant dropping. Mainly used for injection, coating, dripping to the precise position of each product in the product process, can be used to achieve s dotting, drawing lines, circle or arc. It can replace manual work and realize mechanized production. It can be operated by a single machine. It is simple, convenient, high-speed and accurate.

The coating machine specially controls the fluid

Ц

Through linear arc interpolation and other motion control functions, the edge grinding machine can realize the grinding operation of various shapes. It has the characteristics of rough grinding, fine grinding and polishing at one time. It is suitable for grinding and poissing at one time. It is suitable for grinding inclined surfaces and straight edges of metal belts of different sizes and thicknesses. It is equipped with spare grinding wheels. It has the advantages of long service life, regular shape and high efficiency.

Pouring machine

By heating and melting the pouring material, and then through linear arc interpolation and other motion control functions, the pouring machine realizes high-precision path positioning control of two or three axes. The melting material is quantitatively encapsulated and coated on the product to achieve the purpose of adhesion and sealing.

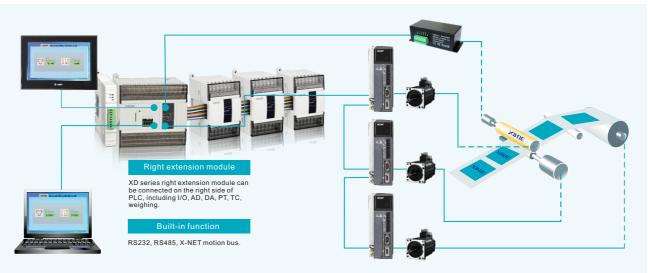
Glass cutting machine

Edge grinding machine

Glass cutting machine through linear arc interpolation and other motion control functions to achieve two or three axes of highprecision path positioning ntrol, the laser cutting machine which processing organic glass has fast speed, high accuracy, accurate positioning. It can produce gifts, panel lens cases, model toys, advertising light boxes, signboard display supplies, packaging boxes, etc.

X-NET motion bus

•X-NET motion control bus


Motion bus control replaces the traditional pulse control mode, which makes the whole system perform faster, more reliable and more stable. At the same time, it makes the complex wiring simpler and improves equipment performance. It can control 20-axis synchronous motion.

① XDC series PLC motion control instructions are easy to learn and use. 0 The synchronization period can reach 10-axis 4ms and 4-axis 2ms.

③ Advanced arithmetic operation is adopted, and the control precision is higher.

•Motion control diagram

Application

CNC lathes

CNC machine tool is the abbreviation of digital control machine tool. It is an automatic machine tool equipped with program control system. The control system can logically process programs with control coding or other symbolic instructions, decode them, use coded number to display, and input them into the NC device through the information carrier. After calculation and processing, the NC device sends out various control signals to control the movement of the machine tool, and automatically processes the parts according to the shape and size required by the drawings. CNC machine tool is a flexible and efficient automatic machine tool, which can solve the problems of complex, precise, small batch and multi-variety parts processing. It represents the development direction of modern machine tool control technology and is a typical mechatronic product.

37

X-NET motion t	ous parts	
Model	Name	Feature
XD-NE-BD	PLC communication extension card	Photoelectric isolation, with terminal resistance
JA-NE-L	Servo fieldbus connection card	Easy to wiring and operate

Mechanical arm

Robot arm is the most widely used automatic mechanical device in the field of robotics. It can be seen in the fields of industrial manufacturing, medical treatment, entertainment services, in can military, semiconductor manufacturing and space exploration. Although they have different shapes, they all have a common characteristic, that is, they can accept instructions and accurately locate a point in three-dimensional (or two-dimensional) space for operation.

High speed cutting machine

The high-speed cutting machine combines the ultrasonic cutting technology with the traditional cutting technology. When the ultrasonic generator works, the ultrasonic energy is transmitted to the welding head through the ultrasonic transducer, which produces violent vibration and friction with the tool mould, so as to achieve the shearing effect. Shearing products have the advantages of beauty, firmness and high production efficiency

Ball grinder

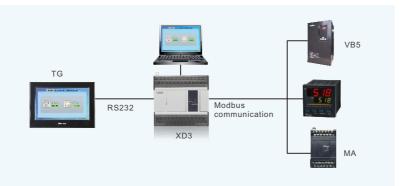
The grinding ball machine uses multi-axis grinding wheels to grind artificial or natural crystals. At most, it can run more than twenty shafts at the same time, so as to produce crystalline products with different shapes. The more than twenty shafts can be controlled by bus, which can realize multi-axis control in a simple and economical way.

16-axis high-speed winder

High-speed winding machine is a device that twists linear objects onto specific workpieces. It is usually used for copper wire winding. In the past, high-speed winding was realized by variable-frequency motor combined with tension control system. With the increasing demand for efficiency in modern industry, the original variable-frequency motor can be replaced by servo to achieve high-speed and efficient production.

Three servo packing machine

Packaging machine can complete all or part of the product and commodity packaging process. Packaging process includes filling, packaging, sealing and other major processes as well as its related before and after processes, such as cleaning, stacking and disassembly. In addition, packaging also includes measurement or stamping on the package. The use of mechanical packaging products can improve productivity, reduce labor intensity, meet the needs of large-scale production, and meet the requirements of cleanliness and hygiene.


Powerful communication and networking functions

The communication port provided by XD/XL series PLC can meet the needs of most communication and network.

Modbus networking	Supports (RTU and ASCII) protocol master and slave mode.
■X-NET networking	A single network can connect up to 32 nodes at the same time, and the network can communicate with each other. X-NET fieldbus belongs to token network structure, and its speed can reach 3Mbps.
Ethernet communication	Supports remote monitoring and local network monitoring as well as communication between modbus-tcp, TCP/IP, free format, UDP and other devices. It can realize the functions of PLC on-line programming, real-time monitoring and data uploading downloading.

Modbus networking

XD/XL series PLC supports Modbus (RTU/ASCII) protocol communication master-slave mode. When PLC is used as master station equipment, it sends requests to other slave devices through Modbus instructions, so that other devices can respond. As a slave station equipment, PLC can only respond to the requirements of other master stations

X-NET networking

•X-NET fieldbus

Fieldbus control replaces the traditional Modbus communication and free communication, which makes the whole system perform faster, more reliable and more stable. At the same time, it makes complex wiring simpler and improves project performance. A single network can connect up to 32 nodes at the same time, and the network can communicate with each other

① XD/XL series PLC support X-NET fieldbus.

② X-NET fieldbus is token network structure.

③ In the network, any node can actively send information to other nodes after obtaining the token. ④ The speed can up to 3Mbps.

Network mode

For workshop monitoring network, it is a token structure, real-time multi-master network. It is a multi-master system. Multiple control, configuration or vision system are interoperable on a bus. Any node in the network has access rights (tokens), and can send and receive data without external requests

Communication speed and distance

The field environment determines the communication speed and medium of fieldbus. Fieldbus uses electric signal to transmit data, which has certain requirements for ication distance. If xinje cable is used, the distance can reach 5m when the speed is 3 Mpbs, 300m when the speed is 192 kpbs, and the communication speed can reach 600bit to 3 Mbit

Isolation

The electric signal and equipment of X-NET fieldbus are electrically isolated. Fieldbus cables are distributed in every corner of the workshop. Once high voltage power is connected in series, the bus transceiver of all equipment in the whole network will be damaged. If there is no isolation, the high voltage signal will continue to damage other circuits inside the equipment, leading to serious consequences.

Intelligence and autonomy

X-NET fieldbus equipment can process all kinds of parameters, operation status and fault information, and has high intelligence. It can complete the basic function of automatic control only by field equipment, and can diagnose the operation status of equipment at any time, which greatly improves the reliability of the whole system. As field control equipment often has self-diagnosis function, and can send fault information to control room, which reduces maintenance workload, users can inquire about the operation status of all equipment, diagnose and maintain information, so as to quickly analyze the causes of failure and troubleshooting, shorten the time of shutdown maintenance, and ultimately achieve the purpose of increasing profits.

Improve the accuracy and reliability of the system

Compared with analog signals, the intelligent and digital fieldbus equipment fundamentally improves the accuracy of measurement and reduces transmission errors. At the same time, due to the simplification of the system structure, the reduction of equipment and connection, the enhancement of the internal functions of field instruments, the round trip transmission of signals is reduced, and the reliability of the system is improved. In addition, due to the standardization and functional modularization of equipment, it also has the advantages of simple design and easy reconfiguration.

Strong system expansibility

Bus can automatically identify the increase and decrease of equipment, no need to install new cables, no need to power off.

Openness of system

X-NET fieldbus is not only added to XD series PLC, but also to TN series HMI and bus type servo driver. It can satisfy all kinds of needs of customers in most occasions. In the future, the company is also committed to cooperating with other instrument manufacturers, so that the equipment of each manufacturer can be interconnected and information exchanged, and has more supporting products.

Shield

The shielded cable of X-NET fieldbus must be well grounded at one point. If the high frequency interference is serious, it can be grounded by multi-point capacitance, and multi-point direct grounding is not allowed to avoid the generation of ground circuit current. Shielded doublecore cable can cancel shielding, which depends on environmental conditions, but shielded cables should be used in high electromagnetic emission environment (such as automobile manufacturing), shielding can improve electromagnetic compatibility. If shielded braided wire and shielded foil are used, they should be connected at both ends and grounded, and covered with shielded wire of as large area as possible to maintain good communication ability. It is also suggested that the data cable must be isolated from the high voltage cable.

Multiple communication stations

The maximum number of nodes in an X-NET fieldbus system can be 127.

Save installation cost

The connection of fieldbus system is very simple. As the twisted pairs or cable can be connected with multiple devices, the consumption of cables, terminals, slot boxes and bridge frames is greatly reduced. The workload of connection design and joint alignment is also greatly reduced. It is convenient to save installation costs, maintenance costs, it supports near and ring topology structure, and the system structure is simple, which reduces the engineering design, drawing quantity, engineering time for laying cables and hardware nanagement documents.

Cable select

In the process of transmission, the influence of surrounding electromagnetic environment is unavoidable. Xinje special cable adopts shielded double core cable or optical fiber. Only when the cable is used correctly can the specified speed and transmission distance be achieved. (It is recommended to use multi-strand copper core shielding wires over 0.3mm2).

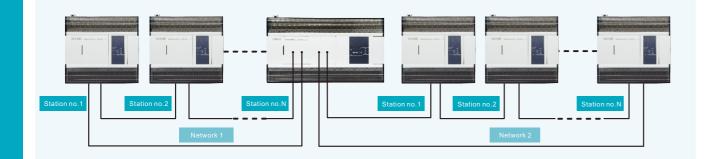
Connector

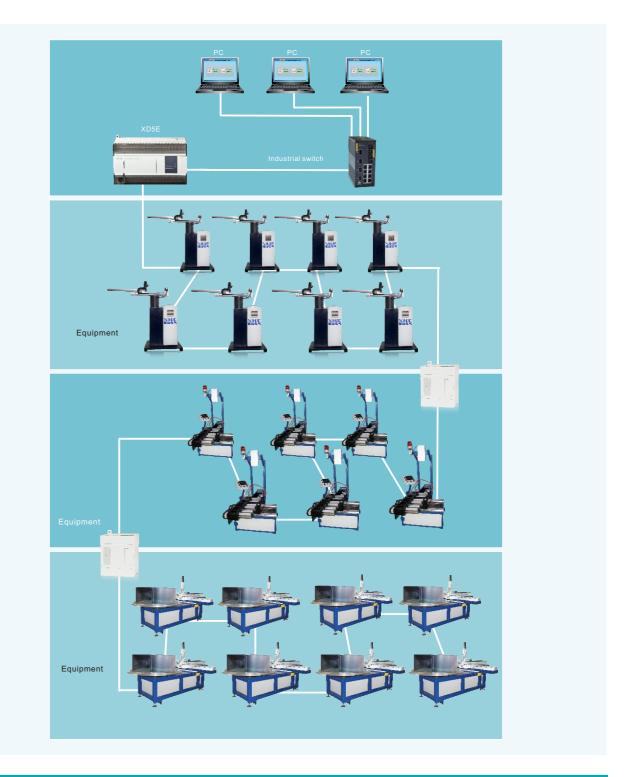
PLC terminal (A, B terminals), BD card XD-NE-BD and XD-NO-BD make the connection more convenient and efficient, effectively improve work efficiency, and easy to maintenance.

Terminal matching

X-NET fieldbus signal has reflection phenomenon like all electromagnetic wave signals. Resistors (120 ohms) should be matched at two terminals of each network of the bus. The first function is to absorb radiation, and the second function is to achieve the correct voltage at both ends of the bus to ensure communication

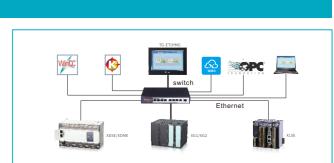
Outstanding cost-effective

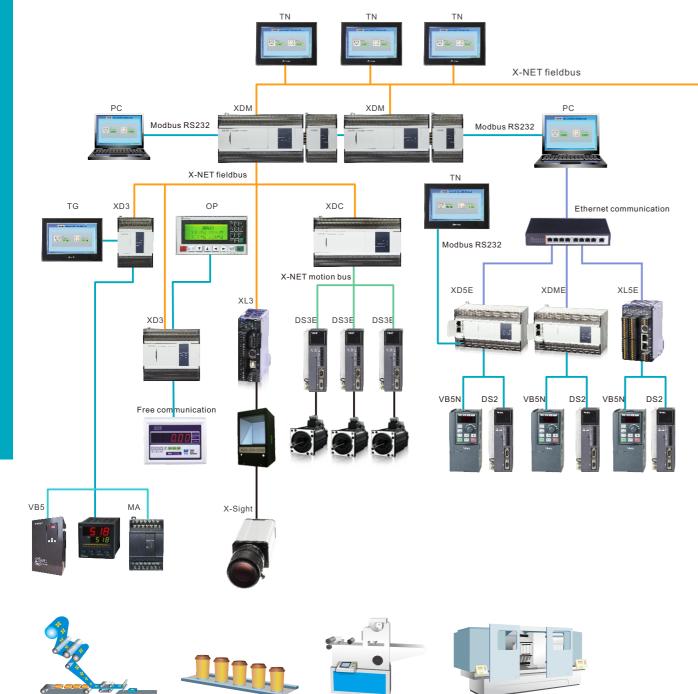

In today's industrial control industry, where fieldbus control is involved, a large amount of money is needed. X-NET fieldbus does not need any additional investment. It is directly configured in all products of Xinje. Customers can use this function directly, and the costeffective ratio is higher.

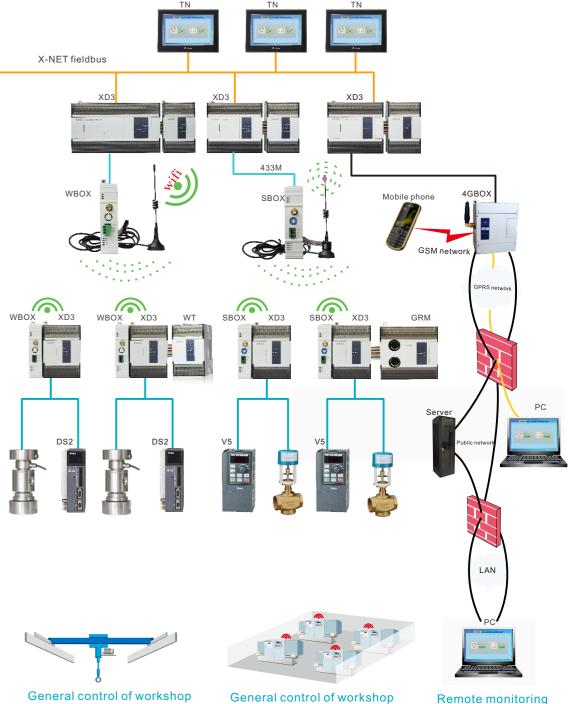

• Flexible network topology

Support a variety of network topology forms, including ring topology and multi-network structure.

Multi-network structure




Ethernet communication


Ethernet communication is mainly used in XD5E/XDME/XL5E/XLME series PLC, which is faster and more stable than USB mode. In the case of multiple PLC communication, users can communicate with any PLC in the field by only one switch. In addition to its application in local area network, Ethernet also supports the functions of remote searching, monitoring operation and uploading and downloading of PLC through the Internet.

Comprehensive Network Structure Diagram

Food processing

Xinje XL/XD series PLC supports X-NET fieldbus. It has the advantages of intellectualization, digitalization and stability The highest speed can up to 3M. It has the advantages of simple design, convenient wiring and easy reconfiguration.

Testing

Xinje XDC series PLC supports X-NET motion bus, can connect to servo at high speed, is suitable for multi-axis control, high-speed and complex motion control requirements, up to 20 axes can be controlled at the same time, the maximum speed can reach 3Mbps.

MODBUS

Food packaging

Support standard Modbus communication. easy to integration with various brand devices, support free communication, and flexible cooperation with the actual situation.

Using Modbus-TCP protocol, applied to automation system with XD series PLC to realize wireless connection between automation system, GPRS network and GSM network, especially fit for distributed system, remote

monitoring and other application occasions.

General control of workshop

General control of workshop

WIFI refers to the establishment of a WIFI network, other nodes access network to achieve high-speed wireless monitoring through the search of WIFI network. 433M refers to greatly improving of its penetration and transmission distance by the reduction of frequency, in order to obtain better wireless communication.

network.

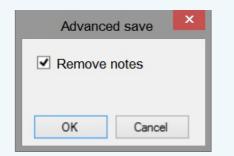
Support Modbus-TCP protocol, with the interconnection of the automation equipment through the Ethernet, the control system of the Ethernet can be easily constructed, which breaks the isolated state of the traditional industrial automation, has better communication performance and achieves a wide range of open

Support Ethernet communication protocol, automation equipment can easily form an Ethernet control system through the interconnection of Ethernet. It breaks the isolated state of the traditional industrial automation, has higher communication performance, and achieves a wide range of open network.

XD/XG/XL Series PLC Programming Tool

Support XD/XG/XL series PLC products

XDPpro software is suitable for XD/XG/XL series PLC, it can make program, configure the network module, extension module, extension BD card and left extension module.


PLC Config	#1 XG-E4AD2DA	Select: XG-E4AD2DA	~	Cance	
Password	- #3 no module	general advanced			
PLC Serial Port ethemet	-#4 no module #5 no module	Parameter		Value	^
Implue -55 no modele -000 Module -27 no modele -000 Module -27 no modele -000 ED -83 no modele -010 ED -83 no modele -010 ED -83 no modele -010 Rom modele -110 no modele	AD1-AD2 filter params(0:s	no filter, 1-254	0		
	AD3-AD4 filter parans(0:s	no filter, 1-254	0		
	AD1 input voltage				
	in to the mound	AD1 voltage input		0-10v	
		AD2 input		voltage	
	AD2 voltage input		0-10+	~	
	X :10000-10027,Y :10000-10005 Configuration module more than 5 add terminal resistance Read From PLC Write		sistance, long cab		

More powerful password function

Password function can not only restrict the upload of PLC program and protect the intellectual property rights of users, but also protect the download of the program from being destroyed.

Advanced save function can encrypt program notes.

Panel configuration

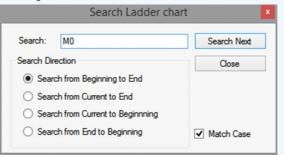
 It reduces the difficulty of making complex instructions.
 XDPpro software provides simple and easy operation instruction editing interface for complicated instructions such as PID, 100-segment high speed counting interruption.

PID I	instruction Paramet	er Config	×	н	igh Speed Count 34 Section Config
				Sugirytone 122 segmentingly apr	prince in
Target Value (SV) D0 Meanu	re Value(PV) D10	Parameter: HO0	Output: 10	HprSwerClidiz +	Corpor Value (210) Hengl Address (213) (2) Operator (2) Manufact (2) Operator (2) O
Parameter Config	Mode				
Manual	•	Common Mode O Ad	anced Mode	Conjune Value: (2	0 Secon Nack 3 0
Samping Time : 0 🔹	ns in	ut Filter Constant (a):	0 0 %	Sector-Nan Expendit Creat Rec	Uka (
Proportion Gain (KP): 0 0	3. 01	ferential increase (KD):	50 0 %		
		tput Upper Limit Value:	4095 💠		
Integration Time(TI): 0 0	*100ms				
Differential Time(TD): 0 🔹	*10ns	tput Lower Limit Value:	0 0		
PID Computation Scope: 0	Deeds	on Config			Real France Public Public Public Ca
PID Control Death Band: 0 0		legative Movement			
	Nega	tive Movement Along with uses definite value PV out	the increase of the		
Self Study Periodic Value: 0	C reduc	ie.			Edit Sequence Block 1
Self Study Method: Step Response		wally used in heat up cont		Connect Segment Book!	
Self Study PID Control Mode: PID Car		ve Movement Along with I ures definite value PV, out	he increase of the outvalue MV will		
The Carlot House.	alao i	ncrease. sually used in cool control.		: liset - 64t Dole Up	
Overshoot Config	10	waky used in cool control.		hda Sap	Connect Oxford Pulse Config. PUE M RUE IS NO
Enable Overshoot Deable Overshoot		ter Range HDD - HD69			
Enable Overshoot O Deable Overs	hoot	se harge hour hous			
Each time adjust the increase: 100	0 2				
Current target value resident Count:	15 0				
Suggestion value					
	Read From PLC	Wite To PLC 0	K Cancel		OK D

•Pulse instruction configuration

XDPpro software added the instruction PLSR pulse configuration interface, all the parameters can be set through the interface.

iata	start address:	DO	user params address:	D100	system params:	K1	output:	YO	
node	E.	relative 🗸	start execute section count:	0	Config				
Ad	d Delete	Upwards D	ownwards						
		frequence	pulse count		wait condition		regi		junp register
•	1	0	0	pe	lse sending comp	lete	B	D	ND
	2	0	0	pe	lse sending comp	10	0	ND	


•Pulse configuration wizard

The Pulse configuration wizard helps users to set parameters better.

	Pulse parameters configuration guide - Y0
Common parameter - Puble direction - Puble direction - Puble unit - Puble sending mode - Gear clearance comper - Betcola origin - Postive negative lint - Mechanical return zero - Interpolation coordinate - Grinding sheel - Find group parameters	Pulse parameters configuration guide This guide is used to configure the pulse parameters. The parameters include pulse logic, pulse direction, pulse mit, pulse sending mode, gene clearance compansion, advectivel argin, positive negative hard limit, positive negative soft limit, senhanical return areo point, interpolation needinate sode, gridding wheel, four groups of parameters. Woor can set the parameters and write in the FLC.
K1_Motor speed K1_Acceleration decele K1_Pulse acceleration c K1_Dearance compens	Each pulse output terminal is corresponding to a pulse parameters confi- guration guide.
K1_FOLLOW paramete Second group parameters K2_Motor speed K2_Acceleration decele K2_Fulse acceleration (K2_Garance compens K2_FOLLOW paramete * S	Notes: the project tree is ticked when the purameters are configured and written in the FLC. Fulles purameters configuration is suitable for instruction FLSR, FLSP, TDR.
	Prev Nest OK Cancel

Convenient way to find soft components

Put the mouse on the soft component, press Ctrl+F to show the searching window.

Rich download function

Support online download program, data will not be deleted, output point will not be shut down, after downloading, PLC will automatically run. It is free to choose which data to download.

✓ Module (✓ I/O Con ✓ Sys Pul ✓ Instruc	Port Config Config fig se Block Config tion Data t Port Config	
all	OK	Cancel

Oscilloscope function

The oscilloscope function can be used only when EtherCAT slave station is connected. It can accurately and intuitively observe the waveform of different signal amplitudes varying with time, which is convenient for monitoring and analysis.

Computing program occupied space

Through this function, programmers can accurately grasp the use of program capacity in PLC.

Strong language editing ability

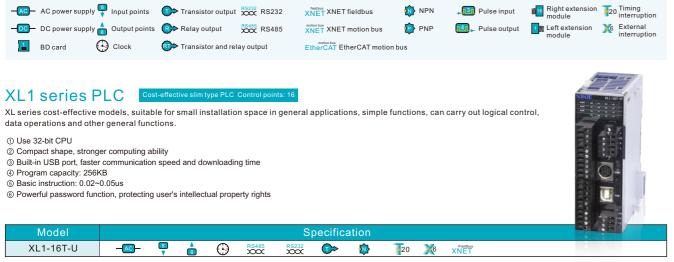
- •Supports simple and easy-to-understand ladder chart and instructions, which can be switched at any time. Users choose them according to their programming habits.
- •C program can be edited in XDPpro software directly, no need to use special C
- •Function blocks can be imported and exported freely, supports active code and passive code. After passive code is exported, the program in function blocks will not be read, and the confidentiality is better.

	Func Block Info	Edit
Func Block Name:	TEUE	Version: 1.0.0
Description:	Quadratic equation (float)	^
	a input value: W [0] b input value: W [2] x input value: W [4] The results showed : W [6] Example: TEUE D0 M0	
Author:	Xinje Electronic Co.,Ltd.	Date: Thursday , Ap v
Export Edit	◯ No Edit	OK Cancel

•Add C language function library, containing more C language instructions, can be directly invoked.

	Ladder FuncBlock -FUNC1 FuncBlock -TEUE	TCA	Calculation area of a circle
	mation Export Compile	TCC	Circumference calculation
		TCR	CRC Check
2	FunctionBlockName: TEUE	TDS	Input data (short) from big to small order
3	Version: 1.0.0	TDS	Input data (short) from small to large order
4	Author: Xinje Electronic Co.,Ltd. UpdateTime: 2010-4-22 16:29:30	TEC.	Calculation area of a circle
6	Comment:	TECI	
5	Quadratic equation (float)	TED	
•		TIL	
9	a input value: W (0)		
	b input value: W [2]	TELC	
2	x input value: W [4]	TEP1	
3	The results showed : W [6]	C TEPT	R Known one right-angle side and hypotenuse need to demand the other right-angle side
4	Example: TFUE DO NO	C TEQ	Quadratic equation (float)
6	TENE DO RO	TESL	M Sum of memory 32-bit floating data
7	a, b, x order input (D0, D1) = 2.0, (D2,	TETR	The product of memory data (float)
8	output: (D6, D7) = \$.0	TEUS	Quadratic equation (float)
9	void TEUE(NORD W , BIT B)	TEX	Exponentiation calculation
		TFA	Factorial solving
2	float 1=FW[0];	TITE	Inverse trigonometric functions
3	float 3=FW[2];		
5	float 1-FW[4]; float m:	TQE	Quadratic equation (short)
6	m=1=17	TSUR	
27	FW[6]=m+3:	C TTP	The product of memory data (short)
28 29		TUE	Quadratic equation (short)

Automatic comparing ladder chart


It can compare the current program of the host computer with the ladder chart in the PLC. If inconsistency occurs, an error is prompted.

Software serial port configuration

- •COM1 to COM3 can be configured.
- •Modbus-RTU or Modbus-ASCII can be choosen
- •Support free communication

XD/XL Series Product List

XL3 series PLC Standard slim type PLC Control points: 16

In addition to the general data processing functions, the standard XL series model also has the functions of high-speed counting, highspeed pulse output, standard clock, communication (modbus RTU/ASCII), PWM pulse width modulation, frequency measurement, accurate timing, interruption, etc. Its processing speed is faster, and it supports right expansion module (10), left expansion module (1), which can meet various needs.

① Use 32-bit CPU

- ② Compact shape, stronger motion function
- ③ Built-in USB port, faster communication speed and downloading time
- ④ Program capacity: 256KB
- ⑤ CPU processing speed is 12 times of XC3 6 Basic instruction: 0.02~0.05us
- ⑦ 2-axis 100KHz pulse output
- (8) Powerful password function, protecting user's intellectual property rights

XL5 series PLC Enhanced slim type PLC O

In addition to the general data processing functions, it also has the functions of high-speed counting, high-speed pulse output, standard clock, communication (modbus RTU/ASCII), PWM pulse width modulation, frequency measurement, accurate timing, interruption, etc. Its processing speed is faster, and it supports right expansion module (16), left expansion module (1), which can meet various needs.

1 Use 32-bit CPU Compact shape, stronger motion function ③ Built-in USB port, faster communication speed and downloading time ④ Program capacity: 512KB ⑤ CPU processing speed is 1.5 times of XL3 6 Basic instruction: 0.02~0.05us ⑦ 4-axis 100KHz pulse output (8) Powerful password function, protecting user's intellectual property rights

XL5E series PLC In addition to the functions of XL5 s space, and can support four pulse of connection of right expansion mode () Use 32-bit CPU () Compact shape, stronger motion fu () Program capacity: 1MB () CPU processing speed is 2~3 time: () Basic instruction: 0.01~0.03us () 4-axis 200KHz pulse output () Ethernet communication (with switt () Powerful password function, protect	eries, it has utputs. It h Ile (16) and nction to of XDM h function)	as one 232 serial left expansion m	g speed (abo port, one 48{ odule (1).	ut 2-3 times o					
Model					Speci	fication			

XLME series Ethernet communication slim type PLC Cont

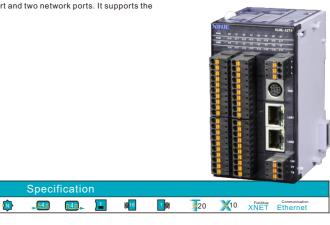
In addition to the functions of XDM series, it has faster processing speed (about 2-3 times of XDM series), larger internal resource space, and can support four pulse outputs. It has one 232 serial port, one 485 serial port and two network ports. It supports the connection of right expansion module (16) and left expansion module (1).

① Use 32-bit CPU

- ② Compact shape, stronger motion function
- ③ Program capacity: 1MB ④ CPU processing speed is 2~3 times of XDM
- ⑤ Basic instruction: 0.01~0.03us
- 6 4-axis 100KHz pulse output
- ⑦ Motion control instructions
- (8) Ethernet communication (with switch function)
- (9) Powerful password function, protecting user's intellectual property rights

Model							
XLME-32T4	-AC-	18 V	4 14	\odot	RS485	RS232	☞

XD1 series


In addition to the general data processing functions, the standard XD series model also has the functions of high-speed counting, high-speed pulse output, standard clock, communication (modbus RTU/ASCII), PWM pulse width modulation, frequency measurement, accurate timing, interruption, etc. Its processing speed is faster, and it supports right expansion module (10), extension BD card (1, 16 points model cannot support), which can meet various needs.

① Use 32-bit CPU

- ② XD1 provides 16/24/32/48/60 points I/O, meet various needs
- ③ Built-in two 232 serial ports, one 485 serial port (16 points model cannot support)
- ④ Program capacity: 256KB
- (5) CPU processing speed is 12 times of XC3 6 Basic instruction: 0.02~0.05us, 6000-step basic instructions only need 0.1~0.2ms
- ⑦ 2-axis 100KHz pulse output
- ⑧ Powerful password function, protecting user's intellectual property rights

							pecifica					_	11	
Model														
XD1-16T-E	- <u>AC</u> -	8		\odot		RS232	ĵ>	N	20	X 6	Fieldbus XNET			
XD1-16R-E	<u>AC</u>	8		\odot		RS232	₿⇒		7 20	X 6	XNET			
XD1-24T-E		14 †	10	\odot	RS485	RS232	☞		7 20	X 10	XNET			
XD1-24R-E	_ <u>AC</u> _	14 V	10	\odot	RS485	RS232	ጮ		7 20	X 10	XNET			
XD1-32T-E		18	14	\odot	RS485	RS232	☞		7 20	X 10	XNET			
XD1-32R-E	AC	18 †	14	\odot	RS485	RS232	₿⇒	N	2 0	X 10	XNET			

Specification

XD2 series Basic type PLC Control points: 16, 24, 32, 48, 60

In addition to the general data processing functions, the basic type of XD series also has the functions of high-speed counting, highspeed pulse output, communication, PWM pulse width modulation, frequency measurement, accurate timing, interruption, etc. Its processing speed is faster, and it cannot support right expansion module, support left extension ED module (1), support extension BD card (1-2, 16 points model cannot support), which can meet various needs.

1 Use 32-bit CPU

② XD2 provides 16/24/32/48/60 points I/O, meet various needs

③ Built-in two 232 serial ports, one 485 serial port, support Modbus, free, X-NET communication ④ Program capacity: 256KB ⑤ CPU processing speed is 12 times of XC3

6 Basic instruction: 0.02~0.05us, 6000-step basic instructions only need 0.1~0.2ms

⑦ 2-axis 100KHz pulse output Powerful password function, protecting user's intellectual property rights

Incremental mode AB phase mode Counter ID Highest frequency Counter ID Highest frequency 3 80KHz/10KHz 3 50KHz/5KHz		Built-In high speed co	unter conny	uration
	Incr	emental mode	AB	phase mode
3 80KHz/10KHz 3 50KHz/5KHz	Counter ID	Highest frequency	Counter ID	Highest frequency
	3	80KHz/10KHz	3	50KHz/5KHz

Model								Specifi	cation						
XD2-16R-E	-AC-	8		\odot	RS485	RS232	₿⇒		_ 13			1	2 0	6	XNET
XD2-16R-C	DC	8		\odot	RS485	RS232	ഭ⇒	\$	_ 13			1	2 0	6	XNET
XD2-16T-E	-AC-	8		\odot	RS485	RS232	☞	\$	<u>, 131</u>	121,-		1	2 0	X 6	XNET
XD2-16T-C	-00-	8		\odot	RS485	RS232	☞	\$, 131			1	2 0	6	XNET
XD2-24R-E	-AC-	14	10	\odot	RS485	RS232	ً	\$,3		1	1	720	X 10	XNET
XD2-24R-C	-00-	14 V	10	\odot	RS485	RS232	₿⇒	\$,3		1	1	2 0	X 10	XNET
XD2-24T-E	-AC-	14 V	10	\odot	RS485	RS232	☞	\$	131			1	2 0	X 10	XNET
XD2-24T-C	_ <u></u>	14 V	10	\odot	RS485	RS232	☞	容	_ []]		1	1	7 20	X 10	XNET
XD2-24RT-E	-AC-	14 V	10	\odot	RS485	RS232	(€>>	∞	_1 31			1	2 0	X 10	XNET
XD2-24RT-C	-00-	14	10	\odot	RS485	RS232	(€>>	\$	<u>_131</u>			1	2 0	X 10	XNET
XD2-32R-E	-AC-	18 V	14	\odot	RS485	RS232	®>	∞	<u>_131</u>		1	1	2 0	X 10	XNET
XD2-32R-C	- <u>DC</u> -	18 V	14	\odot	RS485	RS232	₿>	N	_1 31		1	1	<mark>}</mark> 20	X 10	XNET
XD2-32T-E	-AC-	18 V	14	\odot	RS485	RS232	☞		_1 31		1	1	2 0	X 10	XNET
XD2-32T-C	DC	18 V	14	\odot	RS485	RS232	☞	\$	_131		1	1	7 20	X 10	XNET
XD2-32RT-E	-AC-	18 V	14	\odot	RS485	RS232	R >	\$	<u>_131</u>		1	1	2 0	X 10	XNET
XD2-32RT-C	DC	18 V	14	\odot	RS485	RS232	(€>>	-	,3			1	<mark>}</mark> 20	X 10	XNET
XD2-48R-E	-AC-	28 V	20	\odot	RS485 XXXX	RS232	®>	救	_]]]		2	1	<mark>7</mark> 20	X 10	XNET
XD2-48R-C	DC	28 V	20	\odot	RS485 XXXX	RS232	₿>		, [3]		2	1	2 0	X 10	XNET
XD2-48T-E	- <u>AC</u> -	28 V	20	\odot	RS485	RS232	☞	\$, 🖪	121 ,	2	1	<mark>}</mark> 20	X 10	XNET
XD2-48T-C	-00-	28	20	\odot	RS485	RS232	☞		1 31	121 ,	2	1	<mark>}</mark> 20	X 10	XNET
XD2-48RT-E	-AC-	28 V	20	\odot	RS485	RS232	R >		_ 13	121 ,	2	1	<mark>/</mark> 20	X 10	XNET
XD2-48RT-C	-00-	28	20	\odot	RS485	RS232	(€>>	∞	_ 131		2	1	2 0	X 10	XNET
XD2-60R-E	_ <u>AC</u> _	36 V	24	\odot	RS485	RS232	@>	№	_ []]		2	1	20	X 10	Fieldbus XNET
XD2-60R-C	_ <u>_</u>	36 V	24	\odot	RS485	RS232	₿	\$	_ []]		2	1	20	X 10	XNET
XD2-60T-E	_ <u>_AC</u> _	36 V	24	\odot	RS485 XXXX	RS232	☞	\$	_]]]	121 ,-	2	1	720	X 10	Fieldbus XNET
XD2-60T-C	-00-	36 V	24	\odot	RS485 XXXX	RS232	☞	\$, [3]	121 ,-	2	1	2 0	X 10	XNET
XD2-60RT-E	AC	36 V	24	\odot	RS485	RS232	(()>		, []]	121,-	2	1	7 20	X 10	Fieldbus XNET
XD2-60RT-C	- <u>DC</u> -	36 V	24	\odot	RS485	RS232	(()>	\$, []]		2	1	20	X 10	Fieldbus XNET

XD3 series Standard PLC Control points: 16, 24, 32, 48, 60

In addition to the general data processing functions, the standard type of XD series also has the functions of high-speed counting, high-speed pulse output, communication (Modbus RTU/ASCII), PWM pulse width modulation, frequency measurement, accurate timing, interruption, etc. Its processing speed is faster, and it can support right expansion module (10), left extension ED module (1), extension BD card (1-2, 16 points model cannot support), which can meet various needs.

① Use 32-bit CPU

② XD3 provides 16/24/32/48/60 points I/O, meet various needs ③ Built-in USB port, faster communication speed and downloading time ④ Program capacity: 256KB ⑤ CPU processing speed is 12 times of XC3

6 Basic instruction: 0.02~0.05us, 6000-step basic instructions only need 0.1~0.2ms ⑦ 2-axis 100KHz pulse output

(8) Powerful password function, protecting user's intellectual property rights

	Built-i	in high spe	eed cou	unter con	ifigurat	ion											
Inc	rementa	al mode			AB pha	se mode											
Counter ID	High	nest frequ	ency	Counte	r ID I	Highest fre	quency										
3	80	KHz/10KH	Ηz	3		50KHz/5	(Hz										
Model									Sn	ecificati	on						
XD3-16R-E		AC)	 ▼	A	\odot	RS485	RS232	(}>	ان ه	-13)			§10	1	20	¥ 6	Fieldbus
XD3-16R-0			8	A	$\overline{\odot}$	RS485 XXXX	RS232 XXXX	 ©>		_ <u>_</u>			≊ <u>10</u>		20	<u>×</u>	
		_ <u>AC</u> _	8		\odot	RS485 XXXX	XXXX RS232 XXXX			_ <u>_</u>			≊ <mark>10</mark> ≋10		20	<u> </u>	XNE I Fieldbus XNET
XD3-16T-E			1		0								≊ <u>""</u> ≋ <mark>10</mark>				
XD3-16T-0						RS485 XXXX RS485	RS232		<u></u>	<u>,</u> []]				 ∞	20	<u>×6</u>	Fieldbu XNET Fieldbu
XD3-16RT		<u>–QA</u> –	8 V 8		\odot	RS485 XXXX RS485	R\$232 XXXX R\$232	<u></u>	<u></u>	<u>_</u>]]			<u>≋</u> 10	1 **	20	<u> </u>	Fieldbu XNE1 Fieldbu
XD3-16RT		<u> </u>		<u></u>	\odot	RS485	R\$232 XXXX	<u></u>	<u></u>	<u>_</u>]]			≋ 10	1	2 0	<u> </u>	Fieldbu XNE1
XD3-16PR		- <u>AC</u> -	- <u> </u>	<u></u>	\odot	RS485	RS232 XXXX	<u></u>	<u></u>	1 30			≋ 10	1	2 0	<u> </u>	XNET Eleidbu
XD3-16PR		-00-	•		Θ	RS485	RS232	<u> </u>	<u></u>	,]]			≋ 10		2 0	<u>×6</u>	XNET
XD3-16PT		- <u>AC</u> -			\odot	RS485	RS232	<u> </u>	<u></u>	1 31			\$ <mark>10</mark>	1	2 0	<u>×</u> 6	XNET
XD3-16PT	-C				\odot	RS485	RS232	•	Þ	_1 31			≋10	1	2 0	× 6	Fieldbur XNET
XD3-16PR	T-E	-AC-			\odot	RS485	RS232	()	Þ	<u>_131</u>	121		≋ 10	1	2 0	× 6	XNET
XD3-16PR	T-C		8	<u></u>	\odot	RS485	RS232	(?>	Þ	131			≋ 10	1	2 0	X 6	XNET
XD3-24R-8		AC-	8	10	\odot	RS485	RS232 XXXX	ഭ⇒	∞	_ 131		1	≋ 10	1	<mark>></mark> 20	X 10	XNET
XD3-24R-0	2	-DC-	14	10	\odot	RS485	RS232	₿	愈	,]]]		1	≋ 10	1	<mark>7</mark> 20	X 10	XNET
XD3-24T-E		-AC-	14 V	10	\odot	RS485	RS232 XXXX	☞	愈	_]]		1	≋ 10	1	7 20	X 10	XNET
XD3-24T-0	;		14		\odot	RS485	RS232	☞			121,-		≋ 10	1	20	X 10	XNET
XD3-24RT	·Е	-AC-	14		\odot	RS485	RS232	()>	\$	131	121,-	1	≋ 10	1	7 20	X 10	XNET
XD3-24RT	-C	-DC-	14	10	\odot	RS485	RS232	(0>	\$	_ 131	121,-	1	≋ 10	1	7 20	X 10	Fieldbu XNET
XD3-24PR	-E	AC-	14	A	\odot	RS485	RS232	ഭ⇒	\$			1	∭ 10	1	7 20	X 10	XNET
XD3-24PR	-C	-DC-	14		\odot	RS485	RS232	୲୲୲	Þ	,]]]		1	≋ 10	1	7 20	X 10	XNET
XD3-24PT	·Е	AC-	14		\odot	RS485	RS232	()>		_ []]	121,-	1	≋ 10	1	2 0	X 10	Fieldbu XNET
XD3-24PT	-C	-00-	14	<u></u>	$\overline{}$	RS485	R\$232	 (>>	¢.	<u>_13</u>		1	≋ 10	1	2 0	X 10	Fieldbu XNET
XD3-24PR	T-E		14	<u></u>	$\overline{\bigcirc}$	RS485	RS232		r	,131	121,-	1	≣10	1	2 0	X 10	Fieldbu XNET
XD3-24PR		-00-	14	<u></u>	$\overline{\odot}$	RS485 XXXX	RS232	<u></u>		,3		1	ŝ <mark>10</mark>	1	20	X 10	XNET
XD3-32R-E			18		$\overline{\odot}$	RS485 XXXX	RS232	<u> </u>		,3		1	∽ ≋10		20	X 10	Fieldbu
XD3-32R-0			10		$\overline{\odot}$	RS485	RS232	<u> </u>	 	,3		1	 10	~	20	X 10	Fieldbu
XD3-32T-E		-	1		\odot	RS485	RS232		 &	,3		1	≈ ≋10		20	10	Fieldbu
XD3-32T-0			10		•	RS485 XXXX	RS232 XXXX			- <u>-</u>		1	≊ <u>10</u>		20	×10	Fieldbu
XD3-32RT			18		•	RS485 XXXX	RS232 XXXX		 &	- <u>-</u>		1	≊ <mark>10</mark>		20	×10	
		- <u>AC</u> -	18	14		xxxx RS485 XXXX						1					Fieldbu
XD3-32RT		<u> </u>	18		\odot		RS232 XXXX RS232	<u></u>	<u></u>	<u>_</u>]]	121 ,		≋ 10		20	×10	Fieldbu XNET
XD3-32PR		<u>–AC</u> –	18		\odot	RS485	RS232	<u></u>	<u></u>	,]]		1	≋ 10	1	20	X 10	XNET
XD3-32PR		-00-	Ť	14	\odot	RS485	RS232	<u></u>	<u></u>	,]]]		1	\$ <mark>10</mark>	1	7 20	X 10	Fieldbu XNET
XD3-32PT			18		\odot	xxx	xxx	<u> </u>	<u></u>	1 3			≋ 10	1	2 0	X 10	XNET
XD3-32PT		_ <u>DC</u> _	18 V		\odot	RS485 2002	RS232 XXXX	<u> </u>	<u></u>	<u>_</u>]]		1	≋ 10	1	2 0	×10	Fieldbu XNET
XD3-32PR			18	1	\odot	RS485	RS232	<u></u>	<u></u>	<u>,</u>]]		1	≋ 10	1	2 0	X 10	XNET
XD3-32PR		-DC-			\odot	RS485	RS232 XXXX	()		,]]		1	≋ 10	1	2 0	X 10	XNET
XD3-48R-8		AC-	28	20	\odot	RS485	RS232 XXXX	₿	<u> </u>	_]]		2	≋10	1	2 0	X 10	XNET
XD3-48R-0	;	-DC-	28	20	\odot	RS485	RS232 XXXX	®>	<u> </u>	,]]]		2	≋ 10	1	2 0	X 10	Fieldbu XNET
XD3-48T-E	:	-AC-	28	20	\odot	RS485	RS232 XXXX	()>		131	121	2	<mark>∭10</mark>	1	<mark>}</mark> 20	X 10	Fieldbu XNET
XD3-48T-0	;	- <u>DC</u> -	28	20	\odot	RS485	RS232	()>	痧	1 3		2	≋ 10	1	2 0	X 10	XNET
XD3-48RT	·Е	-AC-	28	20	\odot	RS485	RS232	(€>	愈	,]]]		2	≋ 10	1	7 20	X 10	XNET
XD3-48RT	-C	DC	28	20	\odot	RS485	RS232 XXXX	(?>	\\$	_]]	121	2	≋ 10	1	<mark>}</mark> 20	X 10	XNET
XD3-48PR	-E	-AC-	28	20	\odot	RS485	RS232	₿	ø	, 131		2	∭ 10	1	2 0	X 10	XNET
XD3-48PR	-C	- <u>DC</u> -	28	20	\odot	RS485	RS232	®>	Þ	,131		2	≋ 10	1	720	X 10	XNET
XD3-48PT	·Е	- <u>AC</u> -	28	2	$\overline{\bigcirc}$	RS485	RS232		ø	,3	121,-	2	≋10	1	2 0	X 10	XNET
XD3-48PT	-C	-00-	28	20	$\overline{\odot}$	RS485	RS232	Č>	r	,3	121,	2	≊ <mark>10</mark>		20	X 10	XNET
XD3-48PR		-	28	20	$\overline{\odot}$	RS485 XXXX	RS232	() ()		,131	121,	2	≊ <mark>10</mark>	1	20	X 10	Fieldbur
XD3-48PR			28	20	•	RS485	R\$232			,3	[2]_	2	 ≊ <mark>10</mark>		20	X 10	Fieldbu XNET
XD3-60R-E			36	20 4 24	•	XXXX RS485 XXXX	XXXX RS232 XXXX	 ©>	 &	<u>,</u>		2	≊ <u>10</u>	≈	20	X 10	Fieldbu XNET
	-		36	24	0	xxxx RS485 XXXX	xxx RS232 XXX	 (\$>		, <u></u>		2	≊ <mark>10</mark> ≋10	≊ _1≋	20	<u>×10</u>	XNET Fieldbur XNET

Model	Specification															
XD3-60T-E	- <u>AC</u> -	36 V	24	\odot	RS485	RS232	()>		<u>_131</u>		2	≋ 10	1	2 0	X 10	XNET
XD3-60T-C		36 V	24	\odot	RS485	RS232	☞	-	<u>_131</u>		2	∭ <mark>10</mark>	1	720	X 10	XNET
XD3-60RT-E	- <u>AC</u> -	36) †	24	\odot	RS485	RS232	(()>		<u>_131</u>		2	≋ 10	1	7 20	X 10	XNET
XD3-60RT-C	-00-	36 V	24	\odot	RS485	RS232	(()>	1	131	121 ,	2	∭10	1	20	X 10	XNET
XD3-60PR-E		36 V	24	\odot	RS485	RS232	ഭ⇒		,]]]		2	≋ 10	1	7 20	X 10	XNET
XD3-60PR-C	_ <u>DC</u> _	36 V	24	\odot	RS485	RS232	ഭ⇒		_]]		2	≋ 10	1	720	X 10	XNET
XD3-60PT-E	_ <u>AC</u> _	36 V	24	\odot	RS485	RS232	☞	\$	<u>_131</u>	121,	2	∭ 10	1	2 0	X 10	XNET
XD3-60PT-C	_ <u>DC</u> _	36 V	24	\odot	RS485	RS232	(>>	ø	<u>, 131</u>	[2] ,	2	≋ 10	1	2 0	X 10	XNET
XD3-60PRT-E	- <u>AC</u> -	36 V	24	\odot	RS485	RS232	(()>		<u>_131</u>	12 ,	2	<mark>≋</mark> 10	1	<mark>}</mark> 20	X 10	XNET
XD3-60PRT-C	-00-	36 V	24	\odot	RS485	RS232	(€>	ø	<u>_131</u>		2	∭ <mark>10</mark>	1	2 0	X 10	XNET
XD3-20T3TC-E	- <u>AC</u> -	8	12	\odot		RS232	(>>		, 2	[2] ,				720	X 6	
XD3-20T3TC-E(S)	-AC-	8 V	12	\odot	RS485 XXXX	RS232 XXXX	€>	\$	_121					2 0	X 6	

XD5 series Enhanced type PLC Control points: 16/24/32/48

In addition to all the functions of XD3 series, it has faster processing speed and larger internal resource space. It has one 232 serial port and one 485 serial port. All models support the connection of right extension module (16), extended BD (1-2, 16 points PLC does not support) and left extension module (1).

① Use 32-bit CPU ② XD5 provides 16/24/32/48/60 points I/O, meet various needs

③ Built-in USB port, faster communication speed and downloading time

④ Program capacity: 512KB

⑤ CPU processing speed is 12 times of XC3

⑥ Basic instruction: 0.02~0.05us, 6000-step basic instructions only need 0.1~0.2ms

⑦ 2~6 axis 100KHz pulse output ⑧ Powerful password function, protecting user's intellectual property rights

Incremental mode AB phase mode Counter ID Highest frequency Counter ID Highest frequency 3/4/6 80KHz/10KHz 3/4/6 50KHz/5KHz

Model									Speci	ification						
XD5-16R-E	<u>AC</u>	8		\odot	RS485 XXXX	RS232	⊗	\$	1 31			<mark>≋</mark> 16	1	<mark>]</mark> 20	X 6	Fieldbus XNET
XD5-16R-C		8	8	\odot	RS485	RS232	⊗	\$	_ [3]			≝ <mark>16</mark>	1	7 20	X 6	Fieldbus XNET
XD5-16T-E		8		\odot	RS485	RS232	()>	痧	,]]]			<mark>)</mark> ≋16	1	2 0	X 6	Fieldbus XNET
XD5-16T-C		8		\odot	RS485	RS232	ᢙ	愈	, [3]			<mark>∭</mark> 16	1	2 0	¥ 6	Fieldbus XNET
XD5-24R-E		14 V	10	\odot	RS485	RS232	ጮ	\$	_131			<mark>)</mark> ∭16	1	2 0	X 10	Fieldbus XNET
XD5-24R-C		14 V	1	\odot	RS485	RS232	₿	∞	_ 131			<mark>)≋</mark> 16	1	2 0	10	XNET
XD5-24T-E		14 V	10	\odot	RS485	RS232	ᢙ	\$	_1 31			<mark>)</mark> ∭16	1	2 0	X 10	XNET
XD5-24T4-E		14 V	10	\odot	RS485	RS232	ᢙ	愈	_ 141			<mark>)</mark> ∭16	1	2 0	X 10	Fieldbus XNET
XD5-24T-C		14 V	10	\odot	RS485	RS232	ᢙ	\$	_1 31		1	≝ 16	1	2 0	X 10	Fieldbus XNET
XD5-24T4-C		14 V	10	\odot	RS485	RS232	()>	\$	_ 141		1	<mark>)≋</mark> 16	1	2 0	X 10	Fieldbus XNET
XD5-32R-E		18	14	\odot	RS485	RS232	ጮ		_ [<u>3</u>]			<mark>)</mark> ∭16	1	2 0	X 10	Fieldbus
XD5-32R-C		18 V	14	\odot	RS485	RS232	ጮ	∞	_]]			<mark>)</mark> ≋16	1	<mark>}</mark> 20	X 10	Fieldbus XNET
XD5-32T-E		18 V	14	\odot	RS485	RS232	ତ⇒	∞	_ 131		1	<mark>)</mark> ≋16	1	2 0	X 10	XNET
XD5-32T4-E		18 V	14	\odot	RS485	RS232	ᢙ	∞	_ 141		1	<mark>)</mark> ∭16	1	2 0	X 10	XNET
XD5-32T-C	DC	18 V	14	\odot	RS485	RS232	ᢙ	\$	_]]			<mark>)≋</mark> 16	1	2 0	X 10	XNET
XD5-32T4-C		18 V	14	\odot	R\$485 XXXX	RS232	€>		_		1	<mark>)≋</mark> 16	1	2 0	X 10	XNET
XD5-48R-E		28	20	\odot	RS485	RS232	ጮ	∞	_1 31		2	<mark>)≋</mark> 16	1	<mark>7</mark> 20	X 10	XNET
XD5-48R-C	DC	28 V	20	\odot	RS485	RS232	₿		_ 131		2	<mark>)≋</mark> 16	1	2 0	X 10	XNET
XD5-48T-E		28 V	20	\odot	RS485	RS232	(>>	∞	_]]		2	∰ <mark>16</mark>	1	2 0	X 10	Fieldbus XNET
XD5-48T-C		28 V	20	\odot	RS485	RS232	(>>	<u></u>	_]]		2	∰ <mark>16</mark>	1	<mark>}</mark> 20	X 10	XNET
XD5-48T6-E		28	20	\odot	RS485	RS232	(>>		_ [6]	<u>161</u> ,	2	<mark>)∭16</mark>	1	<mark>></mark> 20	X 10	XNET
XD5-48T6-C		28	20	\odot	RS485	RS232	()>		 [6]	<u>161</u> ,	2	<mark>)</mark> ∭16	1	<mark>}</mark> 20	X 10	XNET
XD5-60R-E		36 V	24	\odot	RS485	RS232	ጮ	\$, 🖪		2	≝ <mark>16</mark>	1	2 0	10	XNET
XD5-60R-C	DC	36 V	24	\odot	R\$485 XXXX	RS232	ഭ⇒		131		2	<mark>)</mark> ≋16	1	<mark>}</mark> 20	10	XNET
XD5-60T-E		36 V	24	\odot	R\$485 XXXX	RS232	ট≫		_]]]		2	≝ <mark>16</mark>	1	2 0	X 10	Fieldbus XNET
XD5-60T-C	DC	36 V	24	\odot	RS485 XXXX	RS232	ট⇒	∞	_]]		2	<mark>)≋</mark> 16	1	<mark>}</mark> 20	X 10	Fieldbus XNET
XD5-60T6-E		36 V	24	\odot	R\$485 XXXX	RS232	ତ⇒	\$	_ 61	161,	2	<mark>)∰16</mark>	1	2 0	X 10	XNET
XD5-60T6-C	DC	36 V	24	\odot	RS485 XXXX	RS232	ᢙ	<u>ø</u>	, [6]	161	2	≝ <mark>16</mark>	1	2 0	X 10	XNET

XD5E series Ehternet type PLC control points: 30, 60

In addition to all the functions of XD5 series, it has faster processing speed (2~3 times of XDM) and larger internal resource space. It supports 4 or 10 channels pulse output. It has one 232 serial port, one 485 serial port, one USB download port (support high-speed upload, download, monitor, speed up to 12M). All models support the connection of right extension module (16), extended BD (1-2) and left extension module (1).

- Use 32-bit CPU
- ② XD5E provides 30/60 points I/O, meet various needs
- ③ Program capacity: 1MB
- ④ CPU processing speed is 2~3 times of XDM
- ⑤ Basic instruction: 0.02~0.05us
- 6 4-axis or 10-axis 100KHz pulse output
- ⑦ Ethernet communication (with switch function)
- ⑧ Powerful password function, protecting user's intellectual property rights

Built-in high speed counter configuration										
Incremental mode AB phase mode										
Counter ID	Highest frequency	Counter ID	Highest frequency							
4/10	80KHz	4/10	50KHz							

Model									Sp	ecificatio	n						
XD5E-30T4	-AC-	18	14	\odot	RS485	RS232	()>	痧	_ [4]			∭ <mark>16</mark>	1	<mark>></mark> 20	X 10	XNET	Communication Ethernet
XD5E-60T10	-AC-	36 V	24	\odot	RS485	RS232	()>	救	_10	101	2	<mark>∭16</mark>	1	7 20	X 10	XNET	Communication Ethernet

XDM series Motion control type PLC Control points: 24, 32,

Support basic motion control instructions. It can realize the functions of 2-axis linkage, interpolation and follow-up. It can realize at least 4-axis high-speed pulse output, up to 10-axis pulse output, support all the functions of standard PLC, such as high speed counting, interruption, PID control, it has faster processing speed, it can insert SD card to store the data, with one RS232 and one RS485 serial port, one USB download port (support high-speed download, monitor, speed can up to 12M), all the models can support right extension modules (16), extended BD (1~2) and left extension module (1).

- ① Use 32-bit CPU
- O XDM provides 24/32/60 points I/O, meet various needs
- ③ Built-in USB port, faster communication speed and download time
- ④ Program capacity: 512KB
- (5) CPU processing speed is 15 times of XC3, 6000-step basic instructions only need 0.1~0.2ms
- 6 4~10 axis 100KHz pulse output
- ⑦ Linear/arc interpolation instructions
- ⑧ Follow-up instructions
- (9) Powerful password function, protecting user's intellectual property rights

Built-in high speed counter configuration										
Incre	mental mode	AB phase mode								
Counter ID	Highest frequency	Counter ID	Highest frequency							
4/10	80KHz	4/10	50KHz							

Model									Specifica	tion						
XDM-24T4-E		14 V	10	\odot	RS485	RS232	()>	∞	, [4]	14	1	≋ 16	1	2 0	X 10	XNET
XDM-24T4-C	DC	14 V	10	\odot	RS485 XXXX	RS232	ᢙ	∞	<u>, 141</u>	<u>∎4</u> ,	1	<mark>≋</mark> 16	1	720	X 10	Fieldbus XNET
XDM-32T4-E		18	4 14	\odot	RS485	RS232	ĵ>	<u></u>	<u>, 141</u>	14	1	≋ 16	1	720	X 10	XNET
XDM-32T4-C	-00-	18 V	4 14	\odot	RS485	RS232	()>	痧	<u>, 141</u>	<u>∎</u>	1	≋ 16	1	720	X 10	XNET
XDM-60T4-E		36	24	\odot	RS485	RS232	()>	愈	<u>, 141</u>	<u>141</u>	2	≋ 16	1	7 20	X 10	XNET
XDM-60T4-C	-00-	36	24	\odot	RS485	RS232	ᢙ	∞	<u>, 141</u>	141	2	≋ 16	1	720	X 10	XNET
XDM-60T10-E		36 V	24	\odot	RS485 XXXX	RS232	ĵ≫		,10	101	2	∰ <mark>16</mark>	1	<mark>7</mark> 20	X 10	XNET
XDM-60T10-C	-00-	36 V	24	\odot	RS485 XXXX	RS232 XXXX	ĵ≫		_1 0	101	2	∰ <mark>16</mark>	1	<mark>7</mark> 20	X 10	XNET

		XIIOE				
ation						
	1			~	Fieldbus	Communication

	1
XRIE maar maa	
	1

② XDC provides 24/32/48/60 points I/O, meet various needs

XDC series control bus type PLC Control p

④ CPU processing speed is 15 times of XC3, 6000-step basic instructions only need 0.1~0.2ms

It has faster processing speed (about 15 times of XC series). It supports floating-point operation. It can support up to 2 channels of pulse output and 4 channels of AB phase high-speed counting. It also supports almost all functions of standard PLC, such as high-speed counting, interruption, PID control, etc. All models support right expansion module (16), BD card (1-2) and the left expansion module (1 block), can be plugged into SD card to store data. It has one RS232 serial port and one RS485 port, which supports the motion control bus and controls 20 axes running through the bus.

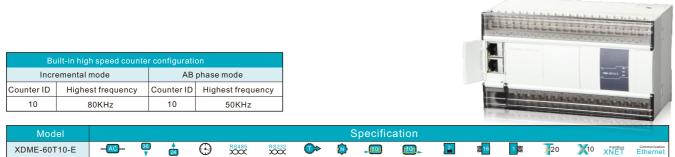
1 Use 32-bit CPU

③ Program capacity: 512KB

⑤ 2-axis 100KHz pulse output 6 1~20 axes bus control

Built-in high speed counter configuration											
Incre	mental mode	AB phase mode									
Counter ID	Highest frequency	Counter ID	Highest frequency								
4	80KHz	4	50KHz								

⑦ Powerful password function, protecting user's intellectual property rights


0

Model									Spe	cificatio	n						
XDC-24T-E	-AC-	14	10	\odot	RS485	RS232	₿	\$	<u>, 141</u>	121 ,	1	¥ 16	1	7 20	X 10	XNET	XNET
XDC-24T-C	-00-	14	10	\odot	RS485	RS232	₿⇒	\$	<u>, 141</u>	121,-	1	∭ <mark>16</mark>	1	2 0	X 10	XNET	XNET
XDC-32T-E	AC-	18	4	\odot	RS485	RS232	ĵ≫	\$	<u>, 141</u>	121,-		∭ <mark>16</mark>	1	2 0	X 10	XNET	XNET Motion bus
XDC-32T-C		18	14	\odot	RS485	RS232	ĵ≫	痧	<u>, 141</u>	121,-		∭ <mark>16</mark>	1	720	X 10	XNET	XNET
XDC-48T-E	<u>AC</u>	28	20	\odot	RS485	RS232	₿	\$, [4]		2	∭ <mark>16</mark>	1	720	X 10	XNET	XNET
XDC-48T-C	-00-	28 V	20	\odot	RS485	RS232	₿	\$	<u>, 141</u>		2	∭ <mark>16</mark>	1	720	X 10	XNET	XNET
XDC-60T-E	AC	36	24	\odot	RS485	RS232	₿	\$	4		2	∭ <mark>16</mark>	1	720	X 10	XNET	XNET
XDC-60T-C	DC	36 V	24	\odot	RS485 XXXX	RS232	₿⇒	愈	<u>, 14</u>	121 ,	2	¥ 16	1	2 0	X 10	XNET	XNET

XDME series Ethernet type PLC Control points: 60

In addition to all the functions of XDM series PLC, it has faster processing speed (2~3 times of XDM), larger internal resource space, supports 10 channels of pulse output, it has one RS232 serial port, two Ethernet ports, supports right extension module (16), BD card (2) and left extension module (1).

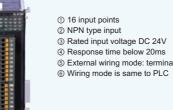
① Use 32-bit CPU ② XDME provides 60 points I/O ③ Program capacity: 1MB ④ CPU processing speed is 2~3 times of XDM 6 Basic instructions: 0.01~0.03us ⑥ 10-axis 100KHz pulse output ⑦ Ethernet communication (with switch function) ® Powerful password function, protecting user's intellectual property rights

XL series right extension module

General specification of XL series right extension module

Item	Specification
Jsing environment	No corrosive gas
Environment temperature	0°C~60°C
Storage temperature	-20 ~ 70°C
Environment humidity	5~95%RH
Storage humidity	5~95%RH
nstallation	Install on the DIN46277 rail directly (width 35mm)

XL series I/O extension module


Extension modules can be used when the number of PLC I/O can not meet the requirements.

•XL series I/O extension module list

М	odel	
NPN input model	PNP input model	
XL-E8X8YR	-	8 c
XL-E8X8YT	-	8 c
XL-E16X	-	16
XL-E16YR	-	16
XL-E16YT	-	16
XL-E16X16YT	-	16
XL-E32X	-	32
XL-E32YT	-	32

•Input extension module

XL-E16X

16 input points ② NPN type input ③ Rated input voltage DC 24V ④ Response time below 20ms ⑤ External wiring mode: terminals

•I/O extension module

XL-E8X8YR,XL-E8X8YT

 8 input points ② Response time below 20ms ③ NPN type input ④ Rated input voltage DC 24V ⑤ 8 output points 6 R: relay output T: transistor output ⑦ R response time below 10ms ⑧ T response time below 0.2ms @T max load: resistance 3A, inductance 12W80VA mExternal wiring mode: terminals Wiring mode is same to PLC

F			

- channels of digital input, 8 channels of relay output, DC24V power supply
- channels of digital input, 8 channels of transistor output, DC24V power supply
- channels of digital input, DC 24V power supply
- channels of relay output, no need power supply
- channels of transistor output, no need power supply
- channels of digital input, 16 channels of transistor output, DC24V power supply
- channels of digital input, DC 24V power supply channels of relay output, no need power supply

XL-E32X

- ① 32 input points
- ② NPN type input
- ③ Rated input voltage DC 24V
- ④ Response time below 20ms
- (5) External wiring mode: need to connect external terminals
- 6 Wiring mode is same to PLC

XL-E16X16YT

- ① 16 input points
- ② Response time below 20ms
- ③ NPN type input
- ④ Rated input voltage DC 24V
- (5) 16 output points 6 T: transistor output
- ⑦ T response time below 0.2ms
- (8) T max load: resistance 3A, inductance 12W80VA
- (9) External wiring mode: need to connect external terminals
- 1 Wiring mode is same to PLC

•Output extension module

 8 input points ② Response time below 20ms ③ Rated input voltage DC 24V ④ 8 output points ⑤ R: relay output T: transistor output ⑥ R response time below 10ms ⑦ T response time below 0.2ms (8) R max load: resistance 3A, inductance 80VA (9) T max load: resistance 3A, inductance 12W80VA @External wiring mode: terminals 1 Wiring mode is same to PLC

XL-E16YR,XL-E16YT

① 32 output points ② T: transistor output ③ T response time below 0.2ms ④ T max load: resistance 3A, inductance 12W80VA ⑤ External wiring mode: need to connect external terminals [©] Wiring mode is same to PLC

XL-E32YT

•I/O extension module parts

XL-E32X, XL-E16X16YT, XL-E32YT need external terminals, the following is the suitable terminals and cables.

Model, terminals and cables

Module	Terminals	Cables
XL-32X	JT-E32X	JC-TE32-NN05 (0.5m)
XL-16X16YT	JT-E16X16YT	JC-TE32-NN10(1.0m)
XL-32YT	JT-E32YT	JC-TE32-NN15 (1.5m)

XL series right extension analog module

The signal can be D/A or A/D converted and the temperature transmitter signal can be received and processed.

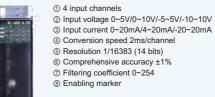
•AD model

	-	1	
<u>16</u>	100	100	
	KL-EBAD-		
-			6
			Ģ
-	1.00		(
. 01	1.00		
18 <mark>-</mark>			(
	L* = 60 A10 A11 67 A2 63 A3		0
•	AID		
* 8	ATT		(
vi2 0	-		
a 🔍	NZ		(
A0 2	63		
		-	
32 <mark>-</mark>	04		
	05		
- 21	A15		
	04 AH4 05 AH5 06 AH5 67 AF7	P	
284	NG	the l	
• C	N7	. .	
	8I		

1 8 input channels

XL-E8AD-A

- ② Input current 0~20mA/4~20mA/-20~20mA 3 Conversion speed 2ms/channel ④ Resolution 1/16383 (14 bits)
- 5 Comprehensive accuracy ±1% 6 Filtering coefficient 0~254

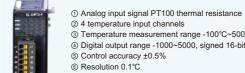


XL-E8AD-V

1 8 input channels ② Input voltage 0~5V/0~10V/-5~5V/-h10~10V ③ Conversion speed 2ms/channel ④ Resolution 1/16383 (14 bits) $\textcircled{\sc 5}$ Comprehensive accuracy ±1% 6 Filtering coefficient 0~254 ⑦ Enabling marker

•Mixed type

③ Input current 0~20mA/4~20mA/-20~20mA ④ Conversion speed 2ms/channel ⑤ Resolution 1/16383 (14 bits) ⑥ Comprehensive accuracy ±1%


XL-E4AD2DA

⑦ Filtering coefficient 0~254 ⑧ Enabling marker

- ② Output voltage 0~5V/0~10V/-5~5V/-10~10V (external load resistance 2KΩ~1MΩ) ③ Output current 0~20mA/4~20mA (external load resistance less than 500Ω) ④ Conversion speed 2ms/channel ⑤ Resolution 1/4095 (12 bits) ⑥ Accuracy ±1% ⑦ Enabling marker
- •Temperature control module PT100 thermal resistance, thermocouple temperature measuremnt, built-in PID control.
- PT100 thermal resistance model

XL-E4PT3-P

② 4 temperature input channels

- ③ Temperature measurement range -100°C~500°C
- ④ Digital output range -1000~5000, signed 16-bit, binary
- (5) Control accuracy ±0.5%
- 6 Resolution 0.1°C
- ⑦ Comprehensive accuracy 1% (relative max value)
- ③ Conversion speed 450ms/4 channels
- Iltering coefficient 0~254
- Auto-tuning function
 Auto-tuning function Heating-cooling control
- ② Optional sampling period

XL series left extension ED module

As a special function ED module of XL series, XL series can connect up to one ED module (except XL1).

•General specification of XL series left extension module

Item	Specification
Using environment	No corrosive gas
Environment temperature	0°C~60°C
Storage temperature	-20 ~ 70°C
Environment humidity	5~95%RH
Storage humidity	5~95%RH
Installation	Install on the DIN46277 rail directly (width 35mm)
Dimension	105mm×25mm×85mm

Programmable logic controller **PLC**

DA type

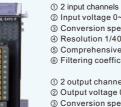
XL-E4DA

① 4 output channels

- ② Output voltage 0~5V/0~10V/-5~5V/-10~10V
- (external load resistance 2KΩ~1MΩ)
- ③ Output current 0~20mA/4~20mA (external load resistance less than 500Ω)
- ④ Conversion speed 2ms/channel
- ⑤ Resolution 1/4095 (12 bits)
- ⑥ Accuracy ±1% ⑦ Enabling marker

TC thermocouple model

XL-E4TC-P 1 Analog input signal type K, S, E, N, B, T, J, R thermocouple @ 4 temperature input channels ③ Temperature measurement range 0°C~1300°C (type K) ④ Digital output range 0~13000, signed 16-bit, binary (5) Control accuracy ±0.5% 6 Resolution 0.1°C ⑦ Comprehensive accuracy 1% (relative max value) ⑧ Conversion speed 420ms/4 channels Iltering coefficient 0~254 Auto-tuning function Heating-cooling control ⑦ Optional sampling period


① 2 input channels ② Input current 0~20mA/4~20mA ③ Conversion speed 10ms ④ Resolution 1/4095 (12 bits) (5) Comprehensive accuracy ±1%

XL-E2AD2DA-A-ED

1 2 output channels ② Output current 0~20mA/4~20mA ③ Conversion speed 10ms ④ Resolution 1/1023 (10 bits) ⑤ Accuracy ±1%

6 Filtering coefficient 0~254

XL-E2AD2DA-V-ED

② Input voltage 0~5V/0~10V ③ Conversion speed 10ms ④ Resolution 1/4095 (12 bits) ⑤ Comprehensive accuracy ±1% ⑥ Filtering coefficient 0~254

 2 output channels ② Output voltage 0~5V/0~10V ③ Conversion speed 10ms ④ Resolution 1/1023 (10 bits) ⑤ Accuracy ±1%

XL-E2AD2PT-A-ED

② Input current 0~20mA/4~20mA ③ Conversion speed 10ms ④ Resolution 1/4095 (12 bits) ⑤ Comprehensive accuracy ±1%

① 2 input channels

- 6 Filtering coefficient 0~254
- ① 2 temperature input channels ② Analog input signal PT100 thermal resistance ③ Temperature measurement range -100°C~500°C
- Digital output range -1000~5000
- ⑤ Conversion speed 10ms ⑥ Resolution 0.1°C
- ⑦ Comprehensive accuracy ±0.8% of full scale ⑧ Filtering coefficient 0~254

XL-E2AD2PT-V-ED

2 input channels

① 2 temperature input channels ② Analog input signal PT100 thermal resistance ③ Temperature measurement range -100°C~500°C ④ Digital output range -1000~5000 ⑤ Conversion speed 10ms ⑥ Resolution 0.1°C ⑦ Comprehensive accuracy ±0.8% of full scale

⑧ Filtering coefficient 0~254

XL-E2PT2DA-V-ED

③ Temperature measurement range -

④ Digital output range -1000~5000

② Analog input signal PT100 thermal resistance

O Comprehensive accuracy ±0.8% of full scale

① 2 temperature input channels

(5) Conversion speed 10ms

⑧ Filtering coefficient 0~254

③ Conversion speed 10ms ④ Resolution 1/1023 (10 bits)

6 Resolution 0.1 °C

 2 output channels ② Output voltage 0~5V/0~10V

⑤ Accuracy ±1%

100°C~500°C

XL-E2PT2DA-A-ED

① 2 temperature input channels

② Analog input signal PT100 thermal resistance ③ Temperature measurement range -100°C~500°C ④ Digital output range -1000~5000 ⑤ Conversion speed 10ms 6 Resolution 0.1 °C ⑦ Comprehensive accuracy ±0.8% of full scale ⑧ Filtering coefficient 0~254

2 output channels ② Output current 0~20mA/4~20mA

③ Conversion speed 10ms Resolution 1/1023 (10 bits) ⑤ Comprehensive accuracy ±1%

XL-E4AD-A-ED

1 4 input channels ② Input current 0~20mA/4~20mA ③ Conversion speed 10ms ④ Resolution 1/4095 (12 bits) ⑤ Comprehensive accuracy ±1% 6 Filtering coefficient 0~254

4 input channels ② Input voltage 0~5V/0~10V ③ Conversion speed 10ms ④ Resolution 1/4095 (12 bits) © Comprehensive accuracy ±1% 6 Filtering coefficient 0~254

XL-E4AD-V-ED

 4 output channels ② Output current 0~20mA/4~20mA ③ Conversion speed 10ms ④ Resolution 1/1023 (10 bits) (5) Comprehensive accuracy ±1%

XL-E4DA-A-ED

XL-NES-ED

① Extend the RS232 or RS485 port on the left side of XL series PLC ③ Serial port COM3

② RS232 and RS485 only can use one of them

57

XL-E4AD-V-ED

- 4 output channels
- ② Output voltage 0~5V/0~10V
- ③ Conversion speed 10ms ④ Resolution 1/1023 (10 bits)
- ⑤ Comprehensive accuracy ±1%

XD series right extension module

XD series I/O extension module

Extension modules can be used when the number of PLC I/O can not meet the requirements.

•General specification of XD series I/O extension module

Item	Specification
Using environment	No corrosive gas
Environment temperature	0°C~60°C
Storage temperature	-20 ~ 70°C
Environment humidity	5~95%RH
Storage humidity	5~95%RH
Installation	Install on the DIN46277 rail directly (width 35mm) or fix with screw M3
Dimension	70.8mm×108mm×89.0mm 108.6mm×108mm×89.0mm

•XD series I/O extension module list

Model		Function
NPN input model	PNP input model	Fullction
XD-E8X	XD-E8PX	8 channels of digital input, DC24V power supply
XD-E8YR	-	8 channels of relay output, DC24V power supply
XD-E8YT	-	8 channels of transistor output, DC24V power supply
XD-E8X8YR	XD-E8PX8YR	8 channels of digital input, 8 channels of relay output, DC24V power supply
XD-E8X8YT	XD-E8PX8YT	8 channels of digital input, 8 channels of transistor output, DC24V power supply
XD-E16X	XD-E16PX	16 channels of digital input, DC24V power supply
XD-E16YR	-	16 channels of relay output, no need power supply
XD-E16YT	-	16 channels of transistor output, no need power supply
XD-E16X16YR-E/C	XD-E16PX16YR-E/C	16 channels of digital input, 16 channels of relay output, AC220V or DC24V power supply
XD-E16X16YT-E/C	XD-E16PX16YT-E/C	16 channels of digital input, 16 channels of transistor output, AC220V or DC24V power supply
XD-E32YR-E/C	-	32 channels of relay output, AC220V or DC24V power supply
XD-E32YT-E/C	-	32 channels of transistor output, AC220V or DC24V power supply
XD-E32X-E/C	XD-E32PX-E/C	32 channels of digital input, AC220V or DC24V power supply

•Input extension module

XD-E8X,XD-E8PX

1 8 input points ② Rated input voltage DC24V ③ Response time below 20ms ④ External wiring mode: terminals (5) Wiring mode is same to PLC 6 Model containing P is PNP input

XD-E16X,XD-E16PX

 16 input points ② Rated input voltage DC24V 3 Response time below 20ms ④ External wiring mode: terminals Wiring mode is same to PLC 6 Model containing P is PNP input

XD-E32X,XD-E32PX

① 32 input points ② Rated input voltage DC24V ③ Response time below 20ms ④ External wiring mode: terminals (5) Wiring mode is same to PLC 6 Model containing P is PNP input

XD-E8X8YR,XD-E8X8YT,XD-E8PX8YR,XD-E8PX8YT

 8 input points ② Response time below 20ms 3 Rated input voltage DC 24V ④ 8 output points ⑤ R response time below 10ms T response time below 0.2ms
The model containing P is PNP input (I) R: relay output T: transistor output (9) R max load: resistance 3A, inductance 80VA 12W80VA T max load: resistance 0.3A, inductance 12W80VA External wiring mode: terminals ¹ Wiring mode is same to PLC

XD series analog extension module

The signal can be A/D or D/A converted, temperature transmitter signal can be received and processed.

•General specification of XD series analog extension module

Item	Specification
Using environment	No corrosive gas
Environment temperature	0°C~60°C
Storage temperature	-20 ~ 70℃
Environment humidity	5~95%RH
Storage humidity	5~95%RH
Installation	Install on the DIN46277 rail directly (width 35mm) or fix with screw M3
Dimension	63mm×108mm×89mm

XD-E4AD

AD type

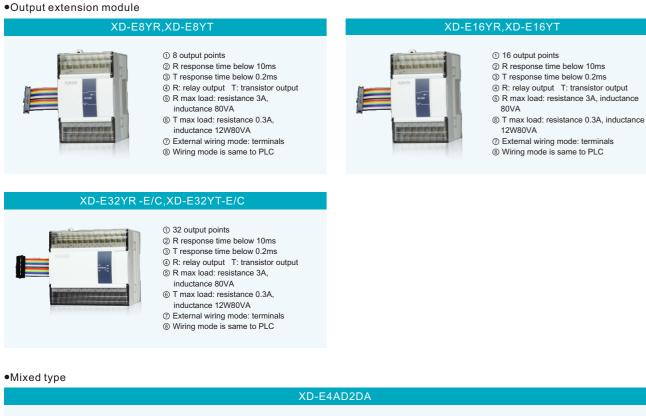
 4 input channels ② Input voltage 0~5V/0~10V/-5~5V/-10~10V ③ Input current 0~20mA/4~20mA (4) Conversion speed 2ms/channel ⑤ Resolution 1/16383 (14 bits) 6 Comprehensive accuracy ±1% ⑦ Filtering coefficient 0~254 ⑧ Enabling marker

XD-E8AD-A

 8 input channels ② Input current 0~20mA/4~20mA/-20~20mA ③ Conversion speed 2ms/channel ④ Resolution 1/16383 (14 bits) (5) Comprehensive accuracy ±1%

6 Filtering coefficient 0~254 ⑦ Enabling marker

-	
4	


XD-E8AD

- 1 8 input channels
- ② Input voltage 0~5V/0~10V/-5~5V/-10~10V
- ③ Input current 0~20mA/4~20mA/-20~20mA
- (Conversion speed 2ms/channel
- (5) Resolution 1/16383 (14 bits)
- 6 Comprehensive accuracy ±1%
- ⑦ Filtering coefficient 0~254
- ⑧ Enabling marker

XD-E8AD-V

- 1 8 input channels ② Input voltage 0~5V/0~10V/-5~5V/-10~10V
- ③ Conversion speed 2ms/channel
- ④ Resolution 1/16383 (14 bits)
- ⑤ Comprehensive accuracy ±1%
- 6 Filtering coefficient 0~254
- ⑦ Enabling marker

① 4 input channels ② Input voltage 0~5V/0~10V/-5~5V/-10~10V ③ Input current 0~20mA/4~20mA/-20~20mA ④ Conversion speed 2ms/channel 6 Resolution 1/16383 (14 bits) ⑥ Comprehensive accuracy ±1%
⑦ Filtering coefficient 0~254 ⑧ Enabling marker

XD-E2DA

 2 output channels ② Output voltage 0~5V/0~10V ③ Output current 0~20mA/4~20mA Conversion speed 2ms/channel ⑤ Resolution 1/4095 (12 bits) 6 Comprehensive accuracy ±1% ⑦ Enabling marker

DA type

1 2 output channels ② Output voltage 0~5V/0~10V/-5~5V/-10~10V 3 Output current 0~20mA/4~20mA ④ Conversion speed 2ms/channel (5) Resolution 1/4095 (12 bits) 6 Comprehensive accuracy ±1% ⑦ Enabling marker

4 output channels ② Output voltage 0~5V/0~10V ③ Output current 0~20mA/4~20mA Conversion speed 2ms/channel ⑤ Resolution 1/4095 (12 bits) © Comprehensive accuracy ±1% ⑦ Enabling marker

XD-E4DA

PT100 thermal resistance, thermocouple temperature measurement, build-in PID control.

PT100 thermal resistance type XD-E6PT-P

 Analog input signal PT100 thermal resistance 6 for the provided and the second secon (5) Control accuracy ±0.5% Resolution 0.1 °C
 ⑦ Comprehensive accuracy 1% (relative max value) ③ Conversion speed 20ms/channel Itering coefficient 0~254 Auto-tuning function Heating-cooling control
 Optional sampling period

XD series left extension ED module

As special function ED module of XD series, XD series (except XD1) can connect 1 ED module.

XD series left extension analog module

XD-2AD2DA-A-ED

-

-

 2 output channels ② Output current 0~20mA/4~20mA ③ Conversion speed 10ms Resolution 1/1023 (10 bits) ⑤ Accuracy 1%

XD-2AD2PT-A-ED

⑤ Comprehensive accuracy 1%

① 2 temperature input channels ② Temperature measurement range -100°C~500°C ③ Conversion speed 10ms ④ Resolution 0.1 °C (5) Comprehensive accuracy ±0.8% of full scale

XD-2PT2DA-A-ED

① 2 temperature input channels ② Temperature measurement range -100°C~500°C

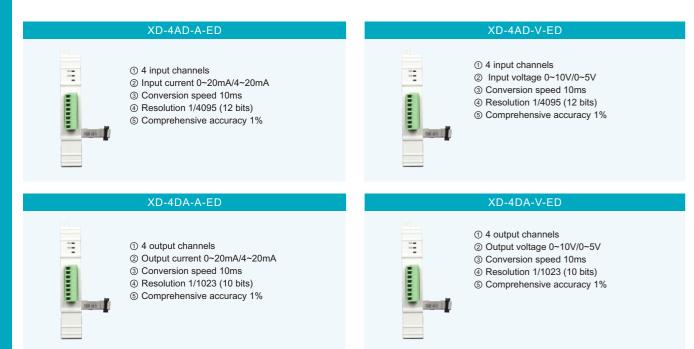
l, 100 (0.5 ④ Resolution 0.1 °C

(5) Comprehensive accuracy ±0.8% of full scale

XD-2AD2DA-V-ED
 2 input channels Input voltage 0~10V/0~5V Conversion speed 10ms Resolution 1/4095 (12 bits) Comprehensive accuracy 1% 2 output channels Output voltage 0~10V/0~5V Conversion speed 10ms Resolution 1/1023 (10 bits) Accuracy 1%

XD-2AD2PT-V-ED

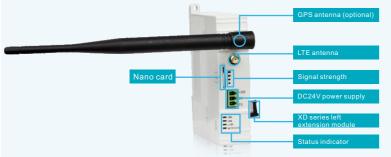
-


1007-00.5

2 input channels

- ② Input voltage 0~10V/0~5V
- ③ Conversion speed 10ms
- ④ Resolution 1/4095 (12 bits)
- (5) Comprehensive accuracy 1%
- ① 2 temperature input channels
- ② Temperature measurement range -100°C~500°C
- ③ Conversion speed 10ms
- ④ Resolution 0.1 °C
- (5) Comprehensive accuracy ±0.8% of full scale

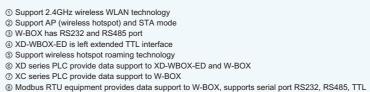
XD-2PT2DA-V-ED


- 2 output channels
- ② Output voltage 0~10V/0~5V
- ③ Conversion speed 10ms
- ④ Resolution 1/1023 (10 bits)
- ⑤ Comprehensive accuracy 1%
- ① 2 temperature input channels
- ② Temperature measurement range -100°C~500°C
- ③ Conversion speed 10ms
- ④ Resolution 0.1 °C
- (5) Comprehensive accuracy ±0.8% of full scale

XD series left extension communication module

Item	Specification
Using environment	No corrosive gas
Environment temperature	0°C~60°C
Storage temperature	-20 ~ 70°C
Environment humidity	5 ~ 95%RH
Storage humidity	5~95%RH
Installation	Install on the DIN46277 rail directly (width 35mm) or fix with screw M3
Dimension -	25mm×100mm×89mm
	18mm×100mm×89mm

XD-4GBOX-ED


PLC program remote upload, download and real-time monitor Communicate with user's mobile through SMS Remote monitor

- Support multiple telecom operators
- ② GPS positioning function
- ③ As left extension ED module of XD series PLC, the transmission rate can reach 1M.
- (4) Support X-NET fieldbus, deep optimization of data monitoring
- ⑤ Persistent online, with disconnection redial and watchdog functions

Left extension WIFI module

Ξ

XD series special function extension BD card

General specification of XD series extended communication BD card

tallation	Install on the XD series PLC directly
nension	40mm×42mm×14mm
ing environment	No corrosive gas
vironment temperature	0°C~60°C
vironment humidity	5~95%RH

XD-NE-BD

XD series PLC extended BD, interface of fieldbus and X-NET.

XD-NO-BD

XD series PLC extended BD, fieldbus communication function, X-NET optical fiber interface for optical fiber communication. It has the advantages of fast speed, strong anti-interference ability and long communication distance.

XD-NS-BD

XD series PLC extension RS232 BD card.

- 710 - 000 - 10 - 10 - 10

XD-WBOX-ED

(1) Support Modbus-TCP communication protocol (cannot over 4 connections), X-NET communication protocol, Xinje Cloud web SCADA

The names of each part are as follows:

Name		Function	
Communication indicator		The indicator flashes when the communication of BD card is successful	
	А	RS485+	
Wiring	В	RS485-	
terminals	SG	Signal ground	
	٠	Empty terminal	
Terminal resistance of	lial switch	Select whether terminal resistance (120) is needed by dial switch	

The names of each part are as follows:

Communication indicator	The indicator flashes when the communication of BD card is successful
Wiring terminals	Left side is signal input terminal, right side is signal output terminal

The names of each part are as follows:

Name		Function	
Communication indicator		The indicator flashes when the communication of BD card is successful	
	тх	Signal sending terminal	
	RX	Signal receiving terminal	
Wiring terminals	GND	Ground terminal	
•		Empty terminal	

XD/XL Series Products Specification

General specification of basic products

Specification	
Above DC500V 2M	
Noise voltage 1000Vp-p 1us pulse per minute	
Non-corrosive, flammable gases	
0°C~60°C	
5%RH-95%RH (no condensation)	
RS232, connect to the upper device, HMI, programming or debug	
RS485, connect to smart meter, frequency inverter, etc.	
Install on the rail directly or fix with screw M3	
The third kind of grounding (Not grounding with strong electricity system)	

()All the basic units have COM1 for programming and communication. [©]The rail specification is DIN46277, the width is 35mm.

3 Grounding should be separately grounded or shared grounding, not public grounding.

Performance specification of basic unit product

Item					Specification				
Seri	Series XD1		XD2	XD3	XL1	XL3			
	Total points		32	16/24/32/48/60	16/24/32/48/60	16	16		
I/O points ²	Input points	8/14/18	3	8/14/18/28/36	8/14/18/28/36	8	8		
	Output points	8/10/14	1	8/10/14/20/24	8/10/14/20/24	8	8		
Processing	speed			0.0	5us				
User progra	am capacity×1			256	бКВ				
•	ecution mode			Cyc	clic scanning mode				
Programmi	ng mode			Inst	truction, ladder chart, C language				
Power-off h	olding			Fla	shROM and lithium battery (3V button	battery)			
Internal coi	I (X) ^{×3}			896	6: X0~77, X10000~11177, X20000~20	177, X30000~30077			
Internal coi	I (Y) ^{⋇4}			896	5: Y0~77, Y10000~11177, Y20000~20	177, Y30000~30077			
Internal coi			M0~M7999[HM0~HM959] ^{x5}						
Internal col	(101, 1101)	11008 points	11008 points Special use SM0~SM2047 ^{x6}						
Flow (S)					S0~S1023 [HS0~HS127]				
	Points			T0-	T0~T575 [HT0~HT95]				
Timer (T)				100	100ms timer: setting time 0.1~3276.7s				
riner (1)	Specification			10n	ns timer: setting time 0.01~327.67s				
					1ms timer: setting time 0.001~32.767s				
	Points	672 points		C0-	C0~C575 [HC0~HC95]				
Counter (C)	Specification	16-bit counter: setting value -32768~+32767							
	opoolinoution	32-bit counter: setting value -2147483648~+2147483647							
Data register	(D)	11048 words		D0-	~D7999 [HD0~HD999] ^{×5}				
Data register	(8)			Spe	Special use SD0~SD2047 ^{%6}				
FlashROM register (FD)		7120 words		FD	0~FD5119				
				Spe	ecial use SFD0~SFD1999				
High-speed p	rocessing ability			Hig	h speed count, pulse output, external	interruption			
Password pro	tection			6-b	6-bit ASCII				
Self-diagnosi	s function			Pov	wer-on self-check, monitor timer, gram	marcheck			

Item			Specifi	cation		
Serie	s	XD5		XL5		
Total points		16/24/32/48/60		32		
I/O points ×2	Input points	8/14/	18/28/36	18		
	Output points	8/10/	14/20/24	14		
Processing	speed		0.05us			
User progra	am capacity ×1		512KB			
Program ex	ecution mode		Cyclic scanning mode			
Programmi	ng mode		Instruction, ladder cha	rt, C language		
Power-off h	olding		FlashROM and lithium	battery (3V button battery)		
Internal coi	il (X) ^{≭3}		1280: X0~77, X10000~	-11777, X20000~20177, X30000~30077		
Internal coi	il (Y) ^{ж4}		1280: Y0~77, Y10000~	-11777, Y20000~20177, Y30000~30077		
lata and and			M0~M69999[HM0~HM11999] ^{×5}			
Internal coil (M, HM)		87000 points	Special use SM0~SM4999 ^{×6}			
Flow (S)		9000 points \$0~\$7999 [H\$0~H\$999]				
	Points	7000 points T0~T4999 [HT0~HT1999]				
		100ms timer: setting time 0.1~3276.7s				
Timer (T)	Specification	10ms timer: setting time 0.01~327.67s				
			1ms timer: setting time	0.001~32.767s		
	Points	7000 points C0~C4999 [HC0~HC1999]				
Counter (C)	Constituention	16-bit counter: setting value -32768~+32767				
	Specification	32-bit counter: setting value -2147483648~+2147483647				
		100000 words	D0~D69999 [HD0~HD	24999] ^{*5}		
Data register	(D)	100000 words	Special use SD0~SD4999 ^{x6}			
FlashROM	gister (FD)		FD0~FD8191			
FlashROM register (FD)		14192 words	Special use SFD0~SFI	D5999		
High-speed p	processing ability		High speed count, puls	e output, external interruption		
Password pro	otection		6-bit ASCII			
Self-diagnosis function			Power-on self-check, r	nonitor timer, grammar check		

Item					Specificati	ion			
Serie	es	XDM		XDC	XD5E	XDME	XL5E	XLME	
Total points	24/32/60		24/32/48/60	30/60	60	32	32		
I/O points ×2	Input points	14/18/36		14/18/28/36	16/36	36	18	18 14	
	Output points	10/14/24		10/14/20/24	14/24	24	14		
Processin	g speed		0.05us	;		0.03	us		
User prog	ram capacity ^{≭1}		512KB	i.		1M			
Program e	xecution mode				Cyclic scanning mode				
Programm	ing mode				Instruction, ladder char	t, C language			
Power-off	holding				FlashROM and lithium t	pattery (3V button battery)			
Internal co	il (X) ^{≭³}				1280: X0~77, X10000~	11777, X20000~20177, X300	00~30077		
Internal co	il (Y) ^{≭4}				1280: Y0~77, Y10000~	11777, Y20000~20177, Y300	00~30077		
					M0~M69999[HM0~HM1	11999] <mark>×</mark> 5			
Internal coil (M, HM)		87000 points Special use SM0~SM4999 ^{x6}							
Flow (S)		9000 points \$0~\$7999 [H\$0~H\$999]							
	Points	7000 points T0~T4999 [HT0~HT1999]							
Timer (T)					100ms timer: setting tim	100ms timer: setting time 0.1~3276.7s			
miler (1)	Specification	10ms timer: setting time 0.01~327.67s							
		1ms timer: setting time 0.001~32.767s							
	Points	7000 points			C0~C4999 [HC0~HC1	999]			
Counter (C)	Inter (C) Specification 16-bit counter: setting value -32768~+32767								
	Specification	32-bit counter: setting value -2147483648~+2147483647							
					D0~D69999 [HD0~HD2	4999] ^{×5}			
Data register	(D)	100000 words			Special use SD0~SD49	99 ^{×6}			
FlashROM re	gister (ED)				FD0~FD8191				
	9.000 (FD)	14192 words			Special use SFD0~SFD	5999			
High-speed p	rocessing ability				High speed count, pulse	e output, external interruptior	1		
Password pro	otection				6-bit ASCII				
Self-diagnos	is function				Power-on self-check, m	onitor timer, grammar check			

×1 User program capacity refers to the maximum program capacity when secret downloading. ×2 I/O points refer to the terminal numbers which can be input and output signal. X3 X refers to internal input relay, the X points over I can be used as intermediate relay. ×4 Y refers to internal output relay, the Y points over O can be used as intermediate relay. %5[] is defaulted power-off holding area which cannot be changed.

₭6 special use refers to the special registers occupied by the system, which cannot be used as other purpose.

Programmable logic controller	Ρ	LC	

XD/XL series I/O wiring and specification

XL series power supply specification

•External DC power supply

Item	Contents
Rated voltage	DC24V
Voltage permissible range	DC21.6V~26.4V
Rated voltageInput current (only for basic unit)	120mADC24V
Allowable instantaneous power off time	10ms DC24V
Impact current	10A DC26.4V
Max consumption power	12W
Sensor power supply	24V DC±10%

① The power cord should be more than 2mm² in order to prevent voltage drop. ② Even if there is a power failure within 10 ms, the PLC can continue to work. When the power is cut off for a long time or the voltage drops, the PLC stops working, and the output also shows the state of OFF. When the power supply is restored, the PLC automatically starts to run.

3 The grounding terminals of the basic unit and the expansion module are interconnected and reliable grounding (the third kind of grounding).

•Special power supply module XL-P50-E

Independent power supply ensures the normal operation of PLC in a good and reliable power supply system, and prolongs the service life of PLC.

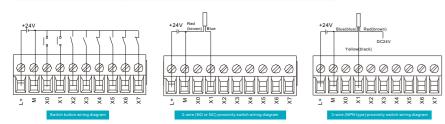
...

1 1		
ngood 1	Item	Contents
	Rated voltage	AC100V~240V
	Allowable voltage	AC90V~265V
	Rated frequency	50Hz~60Hz
	Allowable instantaneous power off time	Interruption time \leqslant 0.5 AC cycle, space \geqslant 1s
14F 12	Impact current	Max below 40A5ms/AC100V Max below 60A5ms/AC200V
	Max consumption power	50W

Power supply specification of XD series

•AC power supply r	nodel	DC power supply model		
Item	Contents	Item	Contents	
Rated voltage	AC100V~240V	Rated voltage	DC24V	
Voltage permissible range	AC90V~265V	Voltage permissible range	DC21.6~26.4V	
Rated frequency	50/60Hz	Rated voltageInput current (only for basic unit)	120mA DC24V	
Allowable instantaneous power off time	Interruption time 0.5 AC cycle, space 1s	Allowable instantaneous power off time	10ms DC24V	
Impact current	Max below 40A 5ms/AC100V Max below 60A 5ms/AC200V 12W	Impact current	10A DC26.4V	
Max consumption power	12W	Max consumption power	12W	
Sensor power supply	24V DC±10%, 16 points max 200mA, 32 points max 400mA	Sensor power supply	24V DC±10%, 16 points max 200mA, 32 points max 400mA	

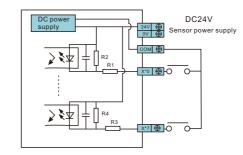
① The power cord should be more than 2mm² in order to prevent voltage drop.


② Even if there is a power failure within 10 ms, the PLC can continue to work. When the power is cut off for a long time or the voltage drops, the PLC stops working, and the output also shows the state of OFF. When the power supply is restored, the PLC automatically starts to run.

(1) The grounding terminals of the basic unit and the expansion module are interconnected and reliable grounding (the third kind of grounding).

Input specification and wiring of XL series

•NPN mode specification


Item	Contents
Input signal voltage	DC24V±10%
Input signal current	7mA/DC24V
Input ON current	Above 4.5mA
Input OFF current	Below 1.5mA
Input response time	About 10ms
Input signal mode	Contactor input or NPN, open collector transistor
Circuit insulation	Photoelectric coupled insulation
Input action display	LED lights when input is ON

Input specification and wiring of XD series

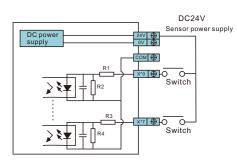
NPN mode specification

Item	Contents		Item	Contents
Input signal voltage	DC24V±10%	h	nput signal voltage	DC24V±10%
Input signal current	7mA/DC24V	- Ii	nput signal current	7mA/DC24V
Input ON current	Above 4.5mA	h	nput ON current	Above 4.5mA
Input OFF current	Below 1.5mA	- Ii	nput OFF current	Below 1.5mA
Input response time	About 10ms	h	nput response time	About 10ms
Input signal mode	Contactor input or NPN, open collector transistor	h	nput signal mode	Contactor input or PNP, open collector transistor
Circuit insulation	Photoelectric coupled insulation	C	Circuit insulation	Photoelectric coupled insulation
Input action display	LED lights when input is ON	h	nput action display	LED lights when input is ON

Output specification and wiring of XD/XL series

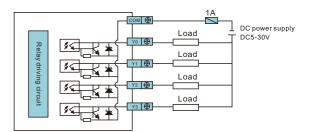
Relay output

	External power su	pply	Below AC250V, DC30V		
			Mechanical insulation		
			LED indicator		
		Resistance load	3A		
	Max load	Indutance load	80VA		
		Light load	100W		
	Min load		DC5V 2mA		
	Response time	OFF> ON	10ms		
		ON> OFF	10ms		


Prevent load short circuit and other faults from burning out the PLC's baseboard wiring, and install 5A-10A fuse every four points.

•High speed pulse output

Model	Model RT or T
High speed pulse output terminal	Terminal Y0/Y1(Y2/Y3)(Y4/Y5~Y10/Y11)
External power supply	Below DC5~30V
Action indicator	LED indicator
Max current	50mA
Pulse max output frequency	100KHz


When using the high-speed pulse output function, the PLC can output 100KHz ~ 200KHz pulse, but it can not guarantee the normal operation of all servos. Please insert about 500Ω resistance between the pulse output terminal and 24V power supply.

•PNP mode specification

Transistor output

External power su	pply	DC5~30V
		Photocoupler insulation
		LED indicator
	Resistance load	0.3A
Max load	Indutance load	8W/DC24V
	Light load	1.5W/DC24V
		DC5V 2mA
	OFF> ON	Below 0.2ms
Response time	ON> OFF	Below 0.2ms

To prevent load short circuit and other faults from burning out the output unit and the PLC baseboard wiring, please select the appropriate load fuse.

Configuration table of high speed counter

	XD2-16R/T												
		Sing	gle phase i	ncrementa	al counting	AB phase counting mode							
	HSC0	HSC2	HSC4	HSC6	HSC8	HSC10	HSC12	HSC0	HSC2	HSC4	HSC6	HSC8	
Max frequency	10K	10K	10K					5K	5K	5K			
4 frequency doubling								2/4	2/4	2/4			
Counting interruption	\checkmark	\checkmark	\checkmark					\checkmark	\checkmark	\checkmark			
X000	U							А					
X001								В					
X002													
X003		U							А				
X004									В				
X005			U										
X006										A			
X007										В			

		XD3-	16/24/32/T	/R/RT	XD5-16/2	4/32/T/R/RT	XD2-24/	32T/R/RT-	E XL3-	16		
		Sir	igle phase	increment	al counting	g mode		AB phase counting mode				
	HSC0	HSC2	HSC4	HSC6	HSC8	HSC10	HSC12	HSC0	HSC2	HSC4	HSC6	HSC8
Max frequency	80K	10K	10K					50K	5K	5K		
4 frequency doubling								2/4	2/4	2/4		
Counting interruption	\checkmark	\checkmark	\checkmark					~	\checkmark	~		
X000	U							A				
X001								В				
X002												
X003		U							А			
X004									В			
X005												
X006			U							A		
X007										В		

		Х	D3-48/60F	R/T/RT	XD5-48	/60R/T/RT	XD2-48/	60R/T/RT-	E			
		Sin	gle phase i	increment	al counting	mode			AB pha	ase countin	g mode	
	HSC0	HSC2	HSC4	HSC6	HSC8	HSC10	HSC12	HSC0	HSC2	HSC4	HSC6	HSC8
Max frequency	80K	80K	10K					50K	50K	5K		
4 frequency doubling								2/4	2/4	2/4		
Counting interruption	\checkmark	\checkmark	\checkmark					~	\checkmark	~		
X000	U							A				
X001								В				
X002												
X003		U							A			
X004									В			
X005												
X006			U							A		
X007										В		
X010												
X011												
X012												
X013												

			XI	D5-24T4/3	2T4	XL5-32T4/2	XL5E-32T4	XLME-	-32T4			
	Sin	igle phase	increment	al counting	g mode			A	B phase co	ounting mod	de	
	HSC0	HSC2	HSC4	HSC6	HSC8	HSC10	HSC0	HSC2	HSC4	HSC6	HSC8	HSC10
Max frequency	80K	80K	80K	80K			50K	50K	50K	50K		
4 frequency doubling							2/4	2/4	2/4	2/4		
Counting interruption	\checkmark	~	~	~			~	\checkmark	~	~		
X000	U						A					
X001							В					
X002												
X003		U						A				
X004								В				
X005												
X006			U						A			
X007									в			
X010												
X011				U						A		
X012										В		
X013												
X014												
X015												
X016												
X017												
X020												
X021												

					XD	5-48T6/60T6						
		Single p	hase incre	emental co	unting mod	le			AB pha	ase countin	g mode	
	HSC0	HSC2	HSC4	HSC6	HSC8	HSC10	HSC0	HSC2	HSC4	HSC6	HSC8	HSC10
Max frequency	80K	80K	80K	80K	80K	80K	50K	50K	50K	50K	50K	50K
4 frequency doubling							2/4	2/4	2/4	2/4	2/4	2/4
Counting interruption	\checkmark	\checkmark	\checkmark	~	\checkmark							
X000	U						А					
X001							В					
X002												
X003		U						A				
X004								В				
X005												
X006			U						A			
X007									В			
X010												
X011				U						А		
X012										В		
X013												
X014					U						А	
X015											В	
X016												
X017						U						A
X020												В
X021												

				XD5E-30T4						
	Singl	e phase incren	nental counting	mode	AB phase counting mode					
	HSC0	HSC2	HSC4	HSC6	HSC0	HSC2	HSC4	HSC6		
Max frequency	80K	80K	80K	80K	50K	50K	50K	50K		
4 frequency doubling					2/4	2/4	2/4	2/4		
Counting interruption	\checkmark	\checkmark	~	~	\checkmark	~	~	~		
X000	U				A					
X001					В					
X002										
X003		U				A				
X004						В				
X005										
X006			U				A			
X007							В			
X0010										
X0011				U				A		
X0012								В		

				XDM-24	4T4/32T4/0	60T4,XDC-2	4T/32T/48T/	60T				
		Sin	gle phase	increment	al counting	g mode		AB phase counting mode				
	HSC0	HSC2	HSC4	HSC6	HSC8	HSC10	HSC12	HSC0	HSC2	HSC4	HSC6	HSC8
Max frequency	80K	80K	80K	80K				50K	50K	50K	50K	
4 frequency doubling								2/4	2/4	2/4	2/4	
Counting interruption	\checkmark	\checkmark	\checkmark	~				~	\checkmark	\checkmark	\checkmark	
X000	U							A				
X001								В				
X002												
X003		U							A			
X004									В			
X005												
X006			U							A		
X007										В		
X010												
X011				U							A	
X012											В	
X013												

Programmable Logic Controller

				XDN	1-60T10	XD5E-6	0T10 XD	ME-60T10				
				S	ingle phas	e incremen	tal counting	mode				
	HSC0	HSC2	HSC4	HSC6	HSC8	HSC10	HSC12	HSC14	HSC16	HSC18	HSC20	HSC22
Max frequency	80K	80K	80K									
4 frequency doubling												
Counting interruption	\checkmark	~	\checkmark									
X000	U											
X001												
X002												
X003		U										
X004												
X005												
X006			U									
X007												
X010												
X011				U								
X012												
X013												
X014					U							
X015												
X016												
X017						U						
X020												
X021												
X022							U					
X023												
X024												
X025								U				
X026												
X027												
X030									U			
X031												
X032												
X033										U		
X034												

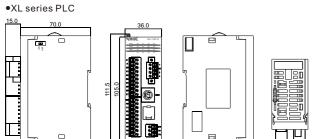
				XDM	1-60T10	XD5E-6	0T10 XD	ME-60T10				
						AB phase of	counting mode	•				
	HSC0	HSC2	HSC4	HSC6	HSC8	HSC10	HSC12	HSC14	HSC16	HSC18	HSC20	HSC22
Max frequency	50K	50K	50K	50K	50K	50K	50K	50K	50K	50K		
4 frequency doubling	2/4	2/4	2/4	2/4	2/4	2/4	2/4	2/4	2/4	2/4		
Counting interruption	\checkmark	\checkmark	~	\checkmark	~	~	~	~	~	~		
X000	A											
X001	В											
X002												
X003		A										
X004		В										
X005												
X006			A									
X007			В									
X010												
X011				A								
X012				В								
X013												
X014					A							
X015					В							
X016												
X017						A						
X020						В						
X021												
X022							A					
X023							В					
X024												
X025								A				
X026								В				
X027												
X030									A			
X031									В			
X032												
X033										A		
X034										В		
X035												

Instruction list

•Application instruction

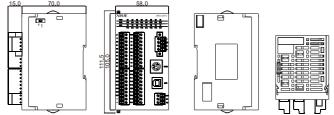
Туре	Mnemonic	Function	Туре	Mnemonic	
	CJ	Condition jump		WAND	Logic and
	CALL	Call subprogram	Data	WOR	Logic or
	SRET	Subprogram return	operation	WXOR	Logic xor
	STL	Process start		CML	Logic not
Program process	STLE	Process end		NEG	Negative
nocess	SET	Open the specified process, close the present process		SHL	Arithmetic left shift
	ST	Open the specified process, not close the present process		SHR	Arithmetic right shift
	FOR	Cycle scope beginning		LSL	Logic left shift
	NEXT	Cycle range end	Data	LSR	Logic right shift
	FEND	Main program end	shift	ROL	Cycle left shift
	LD=	Start ON when (S1)=(S2)		ROR	Cycle right shift
	LD>	Start ON when (S1)>(S2)		SFTL	Bit left shift
	LD<	Start ON when (S1)<(S2)		SFTR	Bit right shift
	LD<>	Start ON when (S1)≠(S2)		WSFL	Word left shift
	LD>=	Start ON when (S1)≥(S2)		WSFR	Word right shift
	LD<=	Start ON when (S1)≤(S2)		WTD	Single word integer of
	AND=	Series connection ON when (S1)=(S2)		FLT	16-bit integer conver
	AND>	Series connection ON when (S1)>(S2)		DFLT	32-bit integer conver
Data	AND<	Series connection ON when (S1)<(S2)		FLTD	64-bit integer conver
comparison	AND<>	Series connection ON when (S1)≠(S2)		INT	Floating point numbe
	AND>=	Series connection ON when (S1)≥(S2)		BIN	BCD convert to binar
	AND<=	Series connection ON when (S1)≤(S2)	Data	BCD	Binary convert to BC
	OR=	Parallel connection ON when (S1)=(S2)	conversion	ASCI	Hex convert to ASCII
	OR>	Parallel connection ON when (S1)>(S2)		HEX	ASCII convert to hex
	OR<	Parallel connection ON when (S1)<(S2)		DECO	Decoding
	OR<>	Parallel connection ON when (S1)≠(S2)		ENCO	High bit coding
	OR>=	Parallel connection ON when (S1)≥(S2)		ENCOL	Low bit coding
	OR<=	Parallel connection ON when (S1)≤(S2)		GRY	Binary conver to gray
	CMP	Data comparison		GBIN	Gray code convert to
	ZCP	Data zone comparison		ECMP	Floating point number
	MOV	Transmission		EZCP	Floating point number z
	BMOV	Data block transmission		EADD	Floating point numbe
Data	FMOV	Multiple points repeated transmission		ESUB	Floating point number
ransmission	EMOV	Floating point number transfer		EMUL	Floating point numbe
	FWRT	FlashROM write in	Floating point	EDIV	Floating point number
	MSET	Batch set	opertion	ESQR	Floating point numbe
	ZRST	Batch reset		SIN	Floating point numbe
	SWAP	Switch high-low byte		COS	Floating point number
	XCH	Switch two data		TAN	Floating point number
	ADD	Add		ASIN	Floating point numbe
	SUB	Substract		ACOS	Floating point number
Data operation	MUL	Multiply		ATAN	Floating point number
	DIV	Divide		TRD	Read clock data
	INC	Increase 1	Clock	TWR	Write clock data
	DEC	Decrease 1		TCMP	Clock comparison

•Special instruction

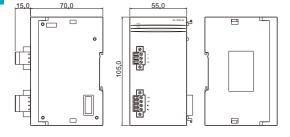

Туре	Mnemonic	Function
	PLSR	Multi-segment pulse output
	PLSF	Variable frequency pulse output
Pulse output	DRVI	Relative positioning
	DRVA	Absolute positioning
	ZRN	Mechanical zero return
	STOP	Pulse stop
	DMOV	Read 32-bit high speed counter
	DMOV	Write 32-bit high speed counter
High-speed	CNT(_AB)	100 segments high speed counting interruption
operation	CNT(_AB)	Electronic CAM
	RST	High speed counter reset
	COLR	Modbus coil read
	INPR	Modbus input coil read
	COLW	Modbus single coil write
Modbus	MCLW	Modbus multiple coils write
communication	REGR	Modbus register read
communication	INRR	Modbus input register read
	REGW	Modbus single register write
	MRGW	Modbus multiple registers write

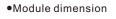
and or xor not gic not gative thmetic left shift timetic right shift gic left shift cle left shift cle left shift left shift right shift right shift right shift shift shift bit shift tord left shift shift bit integer convert to floating point number bit integer convert to floating point number bit integer convert to floating point number it integer convert to floating point number -bit integer convert to floating point number atating point number convert to integer CD convert to binary nary convert to BCD xx convert to ASCII SCII convert to hex secoling gh bit coding mary conver to gray code ray code convert to binary cating point number comparison ting point number comparison ating point number comparison ating point number and add ating point number substract ating point number multiply ting point number divide ating point number square ating point number sine ating point number cosine ting point number asine ating point number acosine iting point number atangent

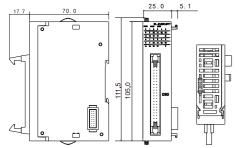
Basic instruction


Mnemonic	Function
LD	Operation start NO contactor
LDI	Operation start NC contactor
AND	Series connection NO contactor
ANI	Series connection NC contactor
OR	Parallel connection NO contactor
ORI	Parallel connection NC contactor
LDP	Rising edge operation start
LDF	Falling edge operation start
ANDP	Rising edge series connection
ANDF	Falling edge series connection
ORP	Rising edge parallel connection
ORF	Falling edge parallel connection
LDD	Read NO contactor
LDDI	Read NC contactor
ANDD	Read NO contactor series connection
ANDDI	Read NC contactor series connection
ORD	Read NO contactor parallel connection
ORDI	Read NC contactor parallel connection
OUT	Coil driving
OUTD	Contactor output
ORB	Parallel connection of series connection circuit block
ANB	Series connection of parallel connection circuit block
MCS	New bus start
MCR	Bus return
ALT	Coil inverse
PLS	Turn on a scan cycle at the rising edge
PLF	Turn on a scan cycle at the falling edge
SET	Set ON the coil
RST	Reset the coil
TMR	Timer driving
CNT	Counter driving
RST	Contactor reset, present value set to zero
END	I/O operation and return to step 0
GROUP	Instruction block folding start
GROUPE	Instruction block folding end

Туре	Mnemonic	Function
Serial port	CFGCR	Read serial port parameters
parameters read and write	CFGCW	Write serial port parameters
	STR	Precise timing
Precise timing	DMOV	Read precise timing register
	STOP	Stop precise timing
	EI	Allow interruption
Interruption	DI	Disable interruption
	IRET	Interruption return
	SBLOCK	Block start
	SBLOCKE	Block end
Sequence block	BSTOP	Stop block
	BGOON	Continue running the block
	WAIT	Wait
Read and write	FROM	Read the module
the module	TO	Write the module
	FRQM	Frequency measurement
Others	PWM	Pulse width modulation
Others	PID	PID operation
	NAME_C	C language function block

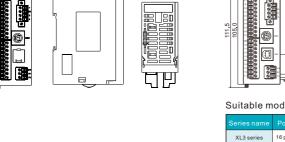


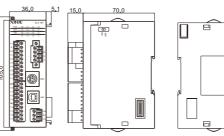


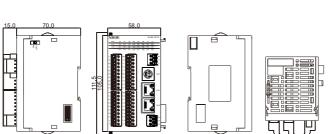


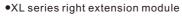
XL5 series 32 points

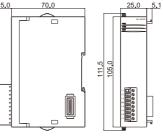
•XL series power supply



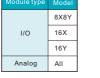


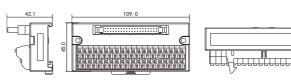

Suitable model

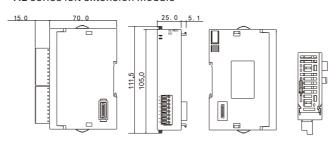


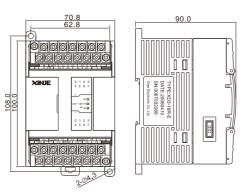


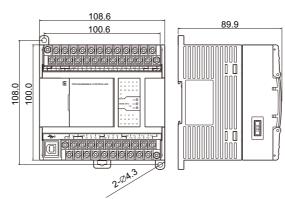
שלי


2/11



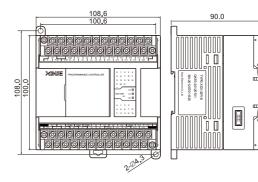



•Terminal dimension


•XL series left extension module

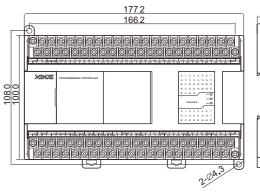
•XD series basic unit

Suitable model	
Series name	Points
XD1 series	
XD2 series	16 points
XD3 series	io politio
XD5 series	


Suitable model	
Series name	Points
XD5E series	30 points

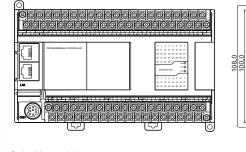
73

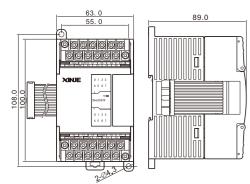
Programmable logic controller	Ρ	L	С	
	-			


Suitable model

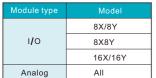
Module type	Model	
Analog	All	
Communication	XL-NES-ED	

Suitable model

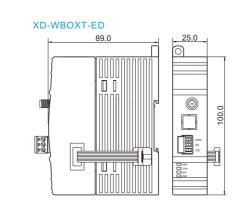

Series name	Points
XD1 series	
XD2 series	
XD3 series	24/32 points
XD5 series	
XDM series	
XDC series	

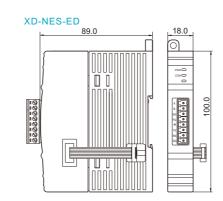

Suitable model

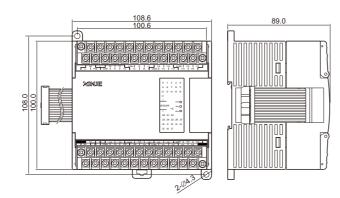
Series name	Points
XD2 series	
XD3 series	
XD5 series	48/60 points
XDM series	
XDC series	


Suitable model XD5E series 60 points XDME series

	Suitable model		
	Module type	Model	
	ı/o	8X/8Y	
		8X8Y	
		16X/16Y	






•XD series left extension module

XD-SBOXT-ED 89.0 25.0 Ë, \boldsymbol{I} 1000 l

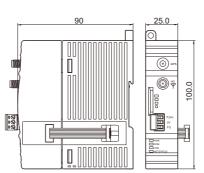
100.0

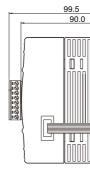
90.0

0 0

Model
32X/32Y
16X16Y

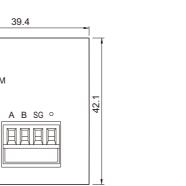
177.2 169.2

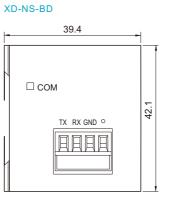

L P

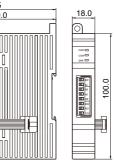

XINU

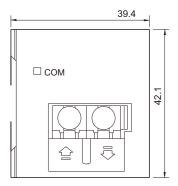
₽

XD-4GBOX-ED






□сом



Programmable logic controller **PLC**

XD series analog ED module

XD-NO-BD

